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Challenges in Meta-Learning

SOTA Meta-learner often suffer in realistic settings[1][2], when:

- Task distribution is broad and multi-modal

- There is distribution shift between the meta-training and meta-testing tasks
p(T)

Studying these issues with existing benchmarks lack of

quantitative measure and ability to control of task 7

complexity and distribution shifts
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[1] Triantafillou et. al. “Meta-dataset: A dataset of datasets for learning to learn from few examples”. In ICLR, 2020.
[2] Yu et.al. “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning”. In CORL, 2019.



Challenges in Meta-Learning

Which of the following datasets is more complex?

Image Source: https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html and Pinterest
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https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://www.pinterest.com/

Challenges in Meta-Learning

Which of the following transition is associated with a greater distribution shift?

Meta-Train-Test Shift
#2

Meta-Train-Test Shift
#1

Boston Dynanyteom

Meta-train task: Switch Manipulation

Boston Dynargs.com

Meta-Test task #1: Picking-up and Meta-Test task #2: Opening a Door
Putting-down an Object

Video Source: Boston Dynamics



Our Contributions

> Propose a channel coding powered meta-learning benchmark.
> And use such benchmark to investigate:
O Ql: How vulnerable are existing meta-learners to under-fitting when trained on
complex task distributions?

O Q2: How robust are existing meta-learners to task-distribution shift between meta-

train and meta-test?

o Q3: Are channel coding meta-learners able to rely on the feature re-use shortcut,

or must they learn to adapt?



What is Channel Coding?

Neural Decoder [3] able to obtain superior performance on complex & realistic channels
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[3] Kim, Hyeji, et al. "Communication algorithms via deep learning." NeurlPS, 2018
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Why Channel Coding as a Benchmark

> A fundamental problem in communications

> Task distributions naturally arise, and fast adaptation to new tasks is practically
valuable

> Controllability of task distributions (via controlling e.g. channel noise distributions)

> |nformation theoretic measures obtainable
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Channel Coding Benchmark for Meta-Learning

® 4 Families (modes) of common channel models: Additive White Gaussian
Noise (AWGN), Bursty, Memory, and Multipath interference channels, and
corresponding decoding tasks.

e A task distribution corresponds to a channel class and is parameterized by
continuous channel parameters w, e.g., SNR value.

e Implementation: Based on and extended Learn2Learn [4] framework.
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[4] Arnold, Sebastien M. R., et al. “learn2learn: A Library for Meta-Learning Research.”




Diversity Score and Train-Test Task-Shift Measures

> Definition 1: The Diversity Score D(J ) of a task distribution p(J ) is defined

as mutual information between the channel parameter w and the received
signal y:
D(T) = Ec[I(w;ylc)],

where w denotes the channel parameter (latent variable) for the task

distribution, i.e.
p(yle) = J_ p(ylc, w)pu(w).



> Definition 2: Train-Test Task-Shift S(p (7 ),p, (7))

Distance between a test distribution J , and a train distribution &, using

Kullback—Leibler divergence (KLD):

S(Pa(T),ps(T)) := Ec[Drr(Pa(yalc)||ps(yslc))]
+ Ee[Dk L (po(yslc)||pa(yalc))],

In which p_(y,/c) and p,(y,/c) denote the channels associated with 7, and &,

respectively.
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Experiment Setup

e 8 Meta-learners: MAML, MAML FO, Reptile, ANIL, KFO, CAVIA, MetaSGD,

and MetaCurvature

e Non-meta-learner: empirical risk minimisation (ERM) baseline “Vanilla”

® 4 Channel families, each sample 200 noise setups
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Results [Q1]: Impact of Training Distribution Diversity

Uni-modal/ within family (AWGN): Focused (SNR -0.5 ~ 0.5); Expanded (SNR -5 ~ 5)
Multi-modal/mixed: AWGN + Bursty + Memory + Multi-path
=> moderate degradation as diversity increases

Target AWGN
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Results [Q2]: Impact of Train-Test Distribution Shift

Target AWGN
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Results [Q2]: Distance Score vs Accuracy Gain over Vanilla

Each dot corresponds to an experiment
Blue curve: fitted accuracy gain
X-axis: Our distance score; Y-axis: Accuracy gain
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Vanilla
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Follow-up Studies (if time allows)

[Q3] Who is taking the feature re-use short-cut? Q
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[5] Raghu, Aniruddh, et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml." arXiv preprint arXiv:1909.09157 (2019).16



Follow-up Studies (if time allows)

Impact of #domains available
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Conclusions

Channel coding provides a flexible benchmark for studying meta-learning
Mild degradation in performance under complex task distributions (Q1)
Absolute performance degrades rapidly with distribution shift. (Q2)

Accuracy improvement over non-meta-learner improves with shift (Q2)

Yy VY YV Y

Less features re-use in channel coding than vision tasks (Q3)
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Thank You & Questions!

Poster Session 12:00-13:00
Room 7
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@ A Channel Coding Benchmark for Meta-Learning Website: https://ruihuili.github.io

Email: rui.li@samsung.com

Rui Li, Ondrej Bohdal, Hyeji Kim, Da Li, Nicholas D. Lane, and Timothy Hospedales

Challenges and Contributions

Meta-learners have been shown to suffer in realistic
settings [1,2], especially when:
+ Task distribution is broad and multi-modal
- There is distribution shift between the
meta-training and meta-testing tasks.

Our Contributions:
- Investigate the effects of the n

diversity of task distributions, and /k
shift between meta-train and
meta-test on performance. - \

- Introduce quantitative metrics of
task-distribution shift and
training-data diversity score.

Channel Coding

- Fundamental problem in communications;

- Practical application where task distributions
naturally arise, and fast adaptation to new
tasks is practically valuable.

Illustration of a neural decoder [3]:

“Lear”

: Ce B sy ye R [
Contact: e[ | e

Email: rui.li@samsung.com
Website: https://ruihuili.github.io
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Coding Benchmark for Meta-Learning
4 Families (modes) of channel models: AWGN,
Bursty, Memory, and Multipath interference
channels, and corresponding decoding tasks.
A task distribution corresponds to a channel

class and is parameterized by continuous
channel parameters w, e.g., SNR value.

Implementation: Based on and extended
Learn2Learn [4] framework.

Definition 1: Train-Test Task-Shift S(p (),p,(F"))
Distance between a test distribution & and a train
distribution STb using KLD:

e[ Dic(pa(Yale)l[po(yale))

[Dir(po(yole)||pa(yale))],

where p (y_|c)and p,(y,|c) denote the channels
associated with .‘73 and STb, respectively.

Definition 2: The Diversity Score D(J") of a task
distribution p(J" ) is defined as mutual information
between the channel parameter w and the received

Where w denotes the channel parameter (latent
variable) for the task distribution, i.e.

plyle) = [, p(yle, w)po(w)

Experiments

Impact of Training Distribution Diversity (Left) and Train-Test
Distribution Shift (Right) on Meta-Learning Performance:

Terget AWGN Target AWG!
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Proposed Distance Score vs Accuracy Improvement over Vanilla
(Non-Meta-ERM):

Take Home Messages: .

\ 8 Who is taking the feature re-use
- Mild degradation in performance short-cut? Q
under complex task distributions

- Absolute performance degrades 2 3L A G
rapidly with distribution shift. |

- Accuracy improvement over non-

meta-learner improves with shift ~ © 74! s

- Channel coding provides a flexible & H T
benchmark for studying
meta-learning
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