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Abstract

The next generation of mobile networks will connect vast numbers of devices and
support services with diverse requirements. Enabling technologies such as millimetre-
wave (mm-wave) backhauling and network slicing allow for increased wireless ca-
pacities and logical partitioning of physical deployments, yet introduce a number of
challenges. These include among others the precise and rapid allocation of network
resources among applications, elucidating the interactions between new mobile net-
working technology and widely used protocols, and the agile control of mobile infras-
tructure, to provide users with reliable wireless connectivity in extreme scenarios.
This thesis presents several original contributions that address these challenges.
In particular, I will first describe the design and evaluation of an airtime allocation
and scheduling mechanism devised specifically for mm-wave backhauls, explicitly ad-
dressing inter-flow fairness and capturing the unique characteristics of mm-wave com-
munications. Simulation results will demonstrate 5x throughput gains and a 5-fold
improvement in fairness over recent mm-wave scheduling solutions. Second, I will
introduce a utility optimisation framework targeting virtually sliced mm-wave back-
hauls that are shared by a number of applications with distinct requirements. Based
on this framework, I will present a deep learning solution that can be trained within
minutes, following which it computes rate allocations that match those obtained with
state-of-the-art global optimisation algorithms. The proposed solution outperforms a
baseline greedy approach by up to 62%, in terms of network utility, while running
orders of magnitude faster. Third, the thesis investigates the behaviour of the Trans-
port Control Protocol (TCP) in Long-Term Evolution (LTE) networks and discusses
the implications of employing Radio Link Control (RLC) acknowledgements under
different link qualities, on the performance of transport protocols. Fourth, I will intro-
duce a reinforcement learning approach to optimising the performance of airborne cel-
lular networks serving users in emergency settings, demonstrating rapid convergence
(approx. 2.5 hours on a desktop machine) and a 5dB improvement of the median
Signal-to-Noise-plus-Interference-Ratio (SINR) perceived by users, over a heuristic
based benchmark solution. Finally, the thesis discusses promising future research di-

rections that follow from the results obtained throughout this PhD project.



Lay Summary

High-speed wireless connectivity has become an essential resource for the human so-
ciety. With growing demand for Internet access, mobile networks are evolving to-
wards a fifth generation (5G), aiming to support a multitude of application scenarios
with high quality of service guarantees, including greater capacity, seamless connec-
tivity, and shorter communication delay. Advances in networking technologies such
as millimetre-wave (mm-wave) communications, network slicing, and self-deployable
emergency networks show great potential to make 5G a reality. However, these emerg-
ing technologies pose several challenging research questions concerning the optimi-
sation of the allocation of resources. This includes how to determine how much rate
should be allocated to traffic flows as they traverse backhaul networks and how much
airtime should be assigned to each flow on different links along the paths taken, when
links employ mm-wave technology for transmission, the data services accommodate
have different performance objectives, or certain fairness guarantees must be met. In
contrast, with extreme cases such as emergency networking where existing deploy-
ments are damaged or do not provide coverage, the essential resource is network con-
nectivity, and the pressing question is how to optimally control the mobility of substi-
tution infrastructure (e.g. airborne base stations) to guarantee user connectivity when
these move as well. This thesis tackles these resource optimisation problems in the en-
visioned 5G settings, dealing with issues specific to the new technologies, in scenarios
including wireless backhauling (i.e. connecting wireless points of access to the Inter-
net without cabled infrastructure) and emergency airborne networks, with the goal of
achieving the best performance.

In multi-hop mm-wave backhaul networks that mainly support data intensive appli-
cations, it is crucial to provision the network resources fairly among data traffic flows,
so that all users experience similar performance, despite various dissimilarities in the
radio channel quality. Towards this end, the thesis first presents an airtime alloca-
tion and scheduling mechanism that achieves fair flow rate allocations. Via simulation
based evaluation, I will show that the proposed solution significantly outperforms the
state-of-the-art in terms of total network throughput and fairness among data flows
traversing the network.

On the other hand, multi-service networks are expected to support applications with
different performance requirements. For example immersive experiences are band-

width intensive, tele-operation of robots is delay sensitive, and Internet of Things ap-
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plications can be satisfied by best-effort services. To meet these diverse requirements
simultaneously, as well as to achieve the highest utility of the network, I will formu-
late a network utility optimisation problem that takes into account customisable utility
functions for different 5G applications. I will then prove that such optimisation is dif-
ficult to solve, and argue that existing methods are either time consuming or unable
to obtain the best, i.e. globally optimal, solution. To address this, I propose a novel
approach based on a deep neural network, which can find accurate data rate allocations
for different traffic flow mixes in a timely manner.

In addition, the thesis investigates the performance of the widely used Transport
Control Protocol (TCP) in the latest cellular network standard, i.e. Long-Term Evo-
lution (LTE). The study provides insights into the interactions between TCP and LTE,
and I will show that, despite good link conditions, the acknowledgement mode (AM) in
the radio link control layer contributes to noteworthy communication overheads. How-
ever, the AM scheme can help recover corrupt data packets when the channel quality
is poor, which often happen when the user is located at the cell edge.

In emergency scenarios, wireless connectivity is an essential resource for rescue
services, civilian operations, as well as for the citizens, yet substitution of unavailable
network infrastructure is often challenging due to difficult terrain and environment con-
ditions. In this case, flexible deployment of mobile connectivity can be enabled with
aerial base stations. However, to provide the users with good connectivity, requires
accurate and rapid mobility control of multiple base stations mounted on Unmanned
Aerial Vehicles (UAVs). Towards this end, I will present a machine learning approach
that tackles the challenges associated with the multi-UAV control task, including un-
certainly in users’ movement and the random nature of wireless channel quality. Im-
portantly, the proposed approach does not rely on explicit knowledge of the wireless
channel behaviour or user mobility models. I will demonstrate that this solution con-
verges fast and provides significant improvements in the signal quality perceived by
the users.

Based on the results obtained and insights uncovered, I will close the thesis by dis-

cussing several interesting research directions that are worth addressing in the future.
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Chapter 1
Introduction

The next generation of mobile networks, commonly referred to as 5G, will embrace
pervasive connectivity and accommodate diverse types of user devices and applica-
tions, which will pose distinct performance requirements. While key technological
advances in network programmability enable network virtualisation, and millimetre-
wave (mm-wave) backhauling has brought multi-Gbps data rates closer to practice,
several important research questions remain to be rigorously addressed before the 5G

enabling technologies can be deployed and fully exploited.

This thesis approaches network resource management in the context of 5G from
multiple angles. I will start with mm-wave multi-hop backhauling scenarios, where
I highlight the challenge posed by the employment of directional antenna patterns,
which is required to overcome the severe signal attenuation at mm-wave frequencies
and to allow for agile deployment of base stations with mm-wave backhauling func-
tionality. I further identify fairness issue in throughput oriented backhauling scenarios,
where rigorous design of airtime allocation is essential in order to achieve carrier-grade
performance and exploit the full potential of the mm-wave airtime resources. Towards
this end, I devise the first max-min fair rate allocation and airtime scheduling mech-
anism for mm-wave backhauls, which is compatible with scheduled access regimes
specified by existing standards or on-going mm-wave standardisation efforts including
IEEE 802.11ad, IEEE 802.11ay, and 5G new radio (NR). This study primarily con-
cerns data intensive applications. As the discussion of 5G key performance indicators
(KPI) continues with the development of this thesis, and thanks to the recent advance
in network programmability and the emerging network slicing paradigm, 5G networks
will be able to support diverse use cases that require distinct performance metrics. As

such, I am the first to investigate utility fairness in rate allocation for individual flows
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2 Chapter 1. Introduction

generated by applications with different requirements and present a utility framework
for 5G networks, which is generally applicable but particularly useful for mm-wave
backhauls. I will show that optimising an arbitrary combination of different types of
utility functions is a hard problem, given the non-convexity and high-dimensionality
of the objective; I will therefore present a supervised learning approach to optimise
such mixed utilities. Taking a complete system level view of future mobile systems, |
will then investigate in depth how legacy transport protocols interact with the current
4G Long-Term Evolution (LTE) networks and how different configurations impact on
the overall throughput performance under various channel conditions. Specifically, I
study the different settings of the radio link control (RLC) layer under different data
and control channel conditions, particularly looking into the performance of transport
protocols at the cell edge in comparison with those at the cell centre. I will complete
this study by looking at providing wireless connectivity as a resource under extreme
circumstances, i.e. the agile deployment and control aspects of emergency cellular net-
works carried on unmanned aerial vehicles (UAVs). Thereby, I will tackle with a deep
reinforcement learning approach the challenging problem of mobility management of
such airborne networks, with the goal of optimising user connectivity.

In the following sections of this chapter, I will present in details a number of im-
portant research challenges towards resource management in the future generation of
mobile networks, and I will highlight contributions made by this thesis towards ad-

dressing some of the most pressing issues.

1.1 Key Research Questions

To fulfil the potential of 5G networks while employing new technologies such as mm-
wave communications, several key technical challenges must be addressed. These span
physical layer (PHY) optimisation, user multiplexing and scheduling, reliable end-to-

end networking over wireless mobile networks, cross-layer design, and many more.

1) Beamforming Mechanisms and Codebook Design for Mm-Wave Systems. Mul-
tiple input multiple output (MIMO) signal processing tailored to the particularities of
mm-wave frequencies is critical for enabling multi-Gbps link rates, yet differs substan-
tially from techniques that target lower frequencies (Heath et al., 2016). Specifically,
practical considerations such as power consumption and circuit technology bring new

hardware constraints. High resolution analog-to-digital converters are expensive and
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power-consuming (Alkhateeb et al., 2014b), hence hybrid beamforming architectures
and the use of low-resolution analog-to-digital converters are explored. Codebook
design, in particular, is critical in enabling rapid and accurate beamforming and sub-
sequently allows for high data rate. This challenging topic has been so far well stud-
ied in e.g. (Wang et al., 2009; Lee and Ko, 2011; Li et al., 2013; Zhou and Ohashi,
2012), addressing the important issues of power allocation and signal-to-interference-
and-noise-ratio (SINR) optimisation from multiple different approaches. Multi-user
MIMO mm-wave beamforming in cellular and Wi-Fi networks opens another area of
research (Alkhateeb et al., 2015; Choi, 2015; Chen et al., 2016; Li et al., 2017b).

2) Channel Measurement and Modelling Techniques for Mm-Wave MIMO Systems.
Signal processing in mm-wave communication often requires accurate channel mod-
els; propagation in mm-wave spectrum is however complicated (Rappaport et al., 2014;
Neil et al., 2017). For example, diffraction patterns can be smaller due to a smaller
Fresnel zone, while penetration loss is much higher in these bands. Moreover, the chan-
nel environment can vary significantly across different use cases, e.g. indoor personal
area networks, densified cellular (including access, backhaul, and even self-backhaul),
or vehicular networks with high user mobility. On one hand, channel measurement
based analysis in mm-wave bands in different environments is needed (Rappaport
et al.,, 2013b). On the other hand, research effort is required towards mathematical
modelling of mm-wave radio propagation based on knowledge of the propagation en-
vironment. These issues have been well pursued by previous research effort (Gustafson
et al., 2014; Blumenstein et al., 2014; Qian et al., 2015; Samimi and Rappaport, 2016;
Peter et al., 2016; Kim et al., 2017).

3) Resource Allocation in Mm-Wave Backhauls. Inresponse to accelerating mobile
traffic demands, cell densification is a first step towards substantially extended capa-
bilities of current mobile network infrastructure (Bhushan et al., 2014). This, however,
entails revisiting existing backhauling practices, in order to be able to transfer vast vol-
umes of data between the access and core networks. In particular, the cost of deploying
traditional, fibre-based backhauls surges with network density, whilst reconfiguration
of such solutions is limited. Wireless alternatives have thus far been confined to mi-
crowave spectrum (0.3-30GHz) of restricted capacity and already overcrowded with
numerous applications, e.g. Wi-Fi, cellular access, and RADAR. The mm-wave band

(30-300GHz) is in contrast underutilised and exposes considerably wider spectral re-
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sources that could support an order of magnitude higher data rates (Rappaport et al.,
2013b). Previous research efforts provide sufficient evidence that in order to mitigate
characteristic severe signal attenuation and to harness the potential of mm-wave for
small cell backhauling, highly-directional beamforming using multiple antennas and
phase arrays is required (Hur et al., 2013; Alexandropoulos, 2017). Directionality in-
trinsically eliminates interference and enables better spatial reuse, though introduces
the risk of link blockage due to moving obstacles and terminal deafness, i.e. receivers
can hardly be aware of transmitters, unless their beams are mutually aligned (Roh et al.,
2014). The latter is particularly problematic in deployments with small form factor
base stations that serve large numbers of end-users over Wi-Fi/cellular and commu-
nicate with gateways using single mm-wave transceivers over multiple hops. Fig. 1.1
illustrates an example deployment of mm-wave small cell backhaul at street lamppost
level where base stations (STAs) form very narrow beams towards each other, as de-
picted between STAs 3 and 4, to achieve multi-Gbps communication.

Backhaul solutions designed with legacy multi-hop wireless technology operat-
ing in sub-6GHz bands are inappropriate, given the unique properties of mm-wave
communications. As the infrastructure has commercial value, it is essential to ensure
resources are not left underutilised, while customers remain satisfied with the level of
service provided. Several 5G standards define carrier-grade mechanisms that allow for
precise scheduling (e.g. 3GPP NR (3GPP, 2018) and IEEE 802.11ad! with Service Pe-
riod operation (IEEE 802.11ad Std., 2014)), yet the airtime allocation and scheduling

tasks, which are crucial for backhauling, are left open to implementation.

4) Utility Optimisation in Mm-wave Backhaul Networks. 5G networks will accom-
modate a new wave of applications with distinct requirements (NGMN, 2015). For
example, ultra-high definition video streaming and immersive applications (e.g. aug-
mented reality/virtual reality, or AR/VR) typically demand very high data throughput.
Autonomous vehicles and remote medical care are stringently delay-sensitive, and be-
long to a new class of Ultra-Reliable Low-Latency Communications (URLCC) ser-
vices (Schulz et al., 2017). In contrast, IoT applications, including smart metering and
precision agriculture, can be satisfied with a best-effort service. In order to simulta-
neously meet such diverse performance requirements, while enabling new verticals,

mobile network architectures are adopting a virtually sliced paradigm (3GPP, 2017b).

'Note that, although the IEEE 802.11ad is primarily intended for single-hop wireless local area
networks, this protocol could also be used for multi-hop solutions in unlicensed bands, e.g. 60GHz,
serving community networks.
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Figure 1.1: Example lamppost backhaul deployment of 6 base stations. STA 6 is connected to
the gateway via wireline, while the other links operate in the mm-wave band. Aggregate flows
traverse the network via different paths (P;, P>, and P;). To achieve multi-Gbps communications,
STAs form narrow beams, as depicted between STA 3 and STA 4 with yellow and blue shades.
Terminal deafness occurs if STA 6 tries to talk to STA 4 at this point. Such a network can be
logically sliced; here Slice 1 accommodates video streaming with sigmoid utility and Slice 2 carries

Internet of Things (IoT) traffic with logarithmic utility. f; ;, denotes a flow on slice i and path ;.

The core idea of slicing is to partition physical network infrastructure into a number
of logically isolated networks, i.e. slices. Each slice corresponds to a specific service

type, which may potentially belong to a certain tenant operator.

Partitioning sliced mm-wave backhauls, and in general backhauls that employ any
other communications technology, among traffic with differnt requirements, as in the
example shown in Fig. 1.1, is essential for mobile infrastructure providers (MIPs). By
and large, MIPs aim to extract as much value as possible from network resources due
to the high capital expenditure and fierce market competition, yet achieving this in
sliced backhauls is not straightforward. The notion of rate utility is widely used to
quantify the worth of an allocation of resources to multiple flows. The question is:
what type of utility is suitable to such multi-service scenarios? Logarithmic utility as
proposed in (Kelly, 1997) has been adopted for elastic services and remains suitable
for best-effort IoT traffic. On the other hand, applications such as video streaming
typically throttle below a threshold, whilst an increase in service level is mostly im-
perceptible by users when the allocated rate grows beyond that threshold. Hence, the
utility of such traffic can be modelled as a step-like sigmoid (Yin et al., 2015). Had

there been real-time applications to accommodate, their utility is typically formulated
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through polynomial functions (Fazel and Chiang, 2005; Wang et al., 2017). Further,
in the case of traffic for which the MIP allocates resources solely based on financial
considerations, a linear utility function can be employed. Hence, as the application
scenarios diversify, a single type of utility cannot capture the distinct features of differ-
ent services. However, combining all these utility functions may lead to non-concave
expressions and computing in a timely manner the optimal rate allocation that max-
imises their value becomes a challenging task. Global search metaheuristics explore
the feasible solution space intelligently to find global maxima (Ugray et al., 2007), yet
often involve unacceptably long computational times. Thus they fail to meet 5G spe-
cific delay requirements in highly dynamic environments, where application demands
change frequently. Greedy approaches can be used to overcome the runtime burden,

though these will likely settle on sub-optimal solutions.

5) Routing in Mm-Wave Backhaul Networks. Data packet routing in mm-wave
backhauls is challenging and traditional routing mechanisms may not be suitable. This
is due to several factors. On one hand, the routing algorithm needs to satisfy the di-
verse and stringent 5G user requirements, including ultra high throughput and very
low delay, which can even be conflicting with the flows produced by different appli-
cations that originate/terminate at the same base station. On the other hand, mm-wave
particularities, such as vast link transmission rates that are however susceptibility to
blockage, require routing solutions that are robust against frequent changes in link
conditions. Moreover, a routing algorithm for mm-wave requires insights into per-hop
queue-lengths, as the vast link rates can otherwise lead to excessive delays, buffer over-
flows and subsequently packet loss, if the transmission rate is overly aggressive from
the perspective of buffer capacity at the receiving station. Addressing these problems
may involve jointly taking into consideration scheduling (Seppénen et al., 2016; Sepp-
nen and Kapanen, 2016; Yun et al., 2016; Niu et al., 2019) and end-to-end flow rate
adaptation (Vu et al., 2018). As this has been a well explored topic in legacy settings
as well as mm-wave, I instead pursue in this thesis a rate and airtime scheduling mech-
anism that is compatible with any stand-alone” routing protocols, and adapt quickly

even when the routing algorithm changes.

2This excludes joint routing algorithms requiring MAC-layer modifications, e.g. joint routing and
scheduling.
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6) Transport Performance in Evolving Mobile Networks. The widely used trans-
port control protocol (TCP) ensures reliable data exchange through error detection,
packet reordering, and congestion avoidance mechanisms. As reported in (Huang et al.,
2013), over 95% of the internet data traffic is based on TCP. However, when deployed
in wireless networks, TCP’s performance may vary considerably, depending on how
the congestion control reacts to the unpredictable radio link environment, how much
impact the protocol overhead has, and to what level the retransmission scheme recov-
ers packets. Understanding the throughput and delay experienced by users located at
the cell edge, where the SINR perceived by the user equipment is often unsatisfactory,
remains elusive. Elucidating this is particularly important in order to achieve seamless
cell edge performance, which is a KPI for 5G.

Moreover, in the control plane of current LTE systems, correct decoding of the
Data Control Indicators (DCIs) depends on the correct interpretation of both Physical
Control Format Indicator Channel (PCFICH) and Physical Downlink Control Channel
(PDCCH) (3GPP, 2016a). However, PCFICH and PDCCH are not protected by any
Automatic Repeat Request (ARQ) scheme. When an error occurs in these symbols,
the data carried in a subframe will no longer be decoded. It is therefore important to
understand the impact of DCI errors on user experience and whether existing recovery
mechanisms, such as the radio link control (RLC) layer acknowledged mode (AM), can

mitigate this problem.

7) Mobility Control of Emergency Airborne Networks. Wireless connectivity is
particularly critical in emergency scenarios such as post-disaster rescue and recov-
ery, where it conveys information relevant to people’s life and property safety. For
instance, communication failures led to an increase in the number of missing people in
the California wild fires in November 2018 (BBC, 2018). Certain areas under extreme
conditions, e.g. following earthquakes, floods, fire, and nuclear plant emergencies,
are hardly accessible with legacy emergency cellular infrastructure carried on vans
(i.e. cells-on-wheels). Meanwhile, following recent hardware and software advances,
commercially available UAVs are being increasingly used for various applications, in-
cluding aerial imaging and asset inspection. As a result, regulatory bodies, such as the
Federal Aviation Administration (FAA), defined rules to enforce the safe operation of
commercial UAVs (RCR Wireless, 2018). The telecom industry also shows growing
interest in deploying UAV-mounted airborne base station (airSTA) for sporadic cellular

services, with an emphasis on challenging use cases. For instance, following hurricane
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Marie’s devastation of Puerto Rico, AT&T obtained FAA approval to fly UAVs for
temporary cellular coverage (FAA, 2017).

Providing wireless connectivity in a large area to a sizeable group of users, in-
cluding citizens and rescue teams (e.g. police force, medical personnel, and firefight-
ers), often requires more than one airborne vehicle with networking capabilities. In
contrast to cellular networks, where the base station locations are fixed, airSTAs are
mobile themselves. Coordination among flying airSTAs and movement control is of
paramount importance in order to provide the needed coverage and ensure sufficient
and stable user data rates, whilst any signal failure can be catastrophic to critical mis-
sions. Stochastic wireless channels and user movement uncertainty, however, render
the airSTA mobility management task complex, involving an exponentially growing
action space as the number of airSTAs increases. Traditional solutions, such as opti-
mal control, require precise environment models, which are hardly obtainable in real-
time and require strong assumptions that can compromise their usefulness. Heuristic

alternatives only produce sub-optimal results.

1.2 Contributions

This thesis addresses research challenges facing resource management in future mobile
networks as identified above. Figure 1.2 summarises the major contributions this thesis
makes towards a subset of the challenges discussed above (namely 3, 4, 6, and 7), and
illustrates how these contributions are related or complementary to each other, as I will

further explain in this section.

1) Max-min Resource Allocation in Mm-wave Backhaul Networks. I will present
a novel approach to jointly solve the airtime allocation and per-link scheduling of ag-
gregate traffic flows, i.e. flow bundles that originate/terminate at the same base station,
3which traverse multi-hop mm-wave backhauls. Chapter 3 of this thesis focuses on
allocating resources at the medium access control layer (MAC) layer for general mm-
wave systems. I do not make contributions in terms of PHY layer optimisation and
argue that aspects including power allocation, codebook design, or beamform training
can be largely decoupled from MAC operation; however, I explicitly take into account

the distinct features of mm-wave technology, i.e. terminal deafness and susceptibility

3Hereafter, whenever there is no scope for confusion, I use the terms ‘flow’ and ‘aggregate flow’
interchangeably.
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Mm-Wave Backhaul

Chapter 3 Chapter 4
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Chapter 6
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Chapter 5
Transport protocol study in

LTE networks Emergency

Deployment

Figure 1.2: Diagramatic overview of the thesis contributions.

to link blockage, as well as realistic heterogeneous traffic demand regimes. The goal
of this study is to achieve a good balance between overall network throughput perfor-
mance and inter-flow fairness. That is, the revenue obtained from operating backhauls
can be maximised, whilst aggregate flows encountering low capacity links and/or in-
creased competition are not unnecessarily throttled (high quality of service). The focus
is on providing small cell backhauling that can cater for real-time applications where
latencies below tens of milliseconds are not perceivable by the user, instead of min-
imising latency, as required by ultra low-latency applications.

As such, Chapter 3 casts backhaul resource allocation as a max-min* optimisation
problem with mm-wave specific terminal deafness and potential secondary interfer-
ence, and traffic demand constraints. I demonstrate that a max-min fair solution exists
and it is unique in scheduled-based multi-hop mm-wave networks. Subsequently, I
propose WIHAUL, a backhauling scheme comprising a progressive filling algorithm
that solves the max-min optimisation problem and computes per-hop airtime shares
for each aggregate flow, and a light-weight scheduling procedure that works on top of
any time-division multiplexing (TDM) protocol for mm-wave systems, enforces the
computed airtimes, and coordinates multi-hop transmissions, enabling spatial reuse. I

implement WIHAUL in the NS-3 simulator, building on preliminary mm-wave PHY

4T work with the max-min criterion instead of the popular Jain’s fairness index, as I aim to avoid
resource under-utilisation incurred when equalising throughputs. Instead, I seek to fulfil flow demands
in increasing order, while sharing remaining network capacity among flows with higher demands. In
the absence of an established quantitative measure of max-min fairness, we work with the notion of
economic inequality (i.e. the Gini coefficient (Gini, 1921)) and extend a generic fairness model (Lan
et al., 2010) to further quantify max-min fairness.
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measurements and incorporating the IEEE 802.11ad specification, with extended func-
tionality for multi-hop settings. Although this does not bear features specific to cellu-
lar systems, the MAC operation in the time domain is largely similar, thus the results
obtained are relevant to such systems as well. The thesis evaluates the performance
of the WIHAUL solution over different network topologies, link dynamics, routing
paradigms, and traffic regimes, and demonstrates up to 5-fold throughput and fairness

gains over existing access schemes.

2) Utility Framework and Optimisation in Sliced Mm-wave Backhauls. In order to
maximise the utilisation of the mm-wave backhaul and to meet the divergent require-
ments of 5G applications, Chapter 4 puts forward a general utility framework for sliced
backhaul networks, incorporating all known utility functions. Arbitrary combinations
of such utility functions lead to highly non-convex sums and optimising these can be
proven NP-hard. Henceforth, this thesis tackles the complexity of such maximisation
(NUM) problem by proposing DELMU, a deep neural network model that learns the
relations between traffic demands and optimal flow rate allocations. Augmented with
a simple post-processing algorithm that ensures minimum service levels and admissi-
bility within the network’s capacity, the evaluation results show that DELMU makes
close-to-optimal inferences, while requiring substantially shorter computation time, as
compared to state-of-the-art global search and a baseline greedy algorithm, over which
DELMU achieves 62% utility gains. The proposed approach can be trained within min-
utes and the millisecond scale inference times make the solution particularly suitable
for highly dynamic traffic regimes in 5G networks.

In view of the current technological trends, I particularly focus on backhauls that
operate in mm-wave bands. However, the proposed utility framework and deep learn-
ing approach are sufficiently general and can be applied to other systems employed in

microwave or sub-gigahertz bands.

3) Transport Protocol Performance Evaluation in Future Cellular Networks. The
evolution of current 4G system towards 5G calls for a more thorough understanding
of the end-to-end performance of transport protocols, given that 5G NR will largely
inherit the LTE structure. To this end, in Chapter 5, I investigate key metrics in the
cellular network that affect directly the user experience, i.e. the end-to-end through-
put, packet loss, under various round-trip-time (RTT) values and congestion control

window (CWND) sizes for the case of TCP, different RLC protocol configurations,
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and different channel qualities. The thesis identifies a number of performance issues
in the interactions between the LTE stack and transport layer, especially in the case
of poor channel quality. Particularly, inferior SINR values at the cell edge will cause
significant throughput and delay degradation for both user datagram protocol (UDP)
and TCP traffic. Although traffic running on top of UDP obtains marginally better
throughput, it observes very high packet loss.

Further, this chapter reveals that commonly used transport protocols (i.e. UDP and
TCP) are sensitive to control plane errors, which occur frequently at the cell edge in
LTE networks. The RLC acknowledged mode can marginally overcome the proto-
col data unit (PDU) loss, yet introduces additional overhead and thus compromises

throughput and delay performance under good link conditions.

4) Mobility Optimisation of Networks-on-Drones. Chapter 6 tackles the challenges
of UAV mobility control in emergency networking deployed on drones, through a deep
reinforcement learning approach. Particularly, a domain-specific reward function that
encourages the UAV mobility control agent to provide high quality signal coverage
to users was devised, and I employ an Asynchronous Advantage Actor-Critic (A3C)
scheme to learn the optimal action policy via interaction with the wireless environment.
This design is motivated by the rapid convergence requirements specific to emergency
settings. Simulation results demonstrate that the proposed solution converges rapidly
(within 4 x 10° steps) and, once trained, it makes accurate movement control deci-
sions, outperforming a benchmark scheme that has perfect knowledge of the stochastic
channel. More precisely, the proposed deep reinforcement learning solution obtains a
5dB median SINR improvement, while only requiring current location and association

information.

The contributions of this thesis as detailed above complement each other, as de-
picted in Figure 1.2. Overall, I investigate resource optimisation and performance is-
sues across different components of 5G mobile networks, including wireless backhauls
(Chapter 3 and Chapter 4) and radio access (Chapter 6), the interactions between MAC
and trasport protocols (Chapter 5), covering both commercial (Chapter 3 - Chapter 5)
and emergency public service scenarios (Chapter 6). In terms of methodology, Chap-
ters 3 and 4 tackle different fairness metrics, i.e. max-min fairness and respectively
utility fairness, whilst Chapters 4 and 6 explore state-of-the art supervised learning and

deep reinforcement learning methods for network resource management purposes.
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1.3 Thesis Organisation

The rest of the thesis is organised as follows. In Chapter 2, I discuss relevant back-
ground and briefly survey previous work related to this PhD project. In Chapter 3, I
delve into the details of the proposed max-min fair resource allocation solution for mm-
wave backhauls. In Chapter 4, I introduce the utility framework for sliced backhauls
and show the deep learning approach to optimising any combination of service util-
ities. In Chapter 5, I discuss thoroughly transport performance in cellular networks,
and in Chapter 6, I detail the deep reinforcement learning approach to mobile base
stations control. Finally, Chapter 7 gives concluding remarks and discusses possible

future research directions.



Chapter 2
Background and Related Work

5G promises enhanced throughput performance, reduced latency and seamless con-
nectivity to vast number of mobile devices in diverse use cases. Key enablers include
mm-wave backhauling and network slicing, while employing machine learning algo-
rithms is increasingly promising to achieve the SG KPIs. This chapter reviews key
technology advances and discusses previous work of direct relevance to this thesis,

highlighting their limitations, which the thesis seeks to address.

2.1 Background

2.1.1 Mm-wave Standardisation and Industrial Efforts

Mm-wave frequency bands expose significantly wider spectral resources that enable
up to multi-Gbps link rates. Regulatory bodies such as Ofcom in the UK have been en-
couraging nation-wide 5G trials in the mm-wave band (Ofcomm, 2018), and industry
stakeholders have begun collaborating on building multi-Gbps mm-wave backhaul so-
lutions in urban areas (e.g. Qualcomm’s and Facebook’s participation in the Terragraph
project (Facebook Inc., 2018; Qualcomm Technologies Inc., 2018). Moreover, early
customer premise equipments are developed to showcase mm-wave capacity (Qual-
comm, 2019).

The 3rd Generation Partnership Project (3GPP) further promotes mm-wave tech-
nology through the specification of 5G NR in Release 15 (3GPP, 2018), with the first
systems already being prototyped by Qualcomm (Qualcomm Technologies Inc., 2017).
To give a bigger picture, Release 15 is the first 5G standardisation proposal by the

13
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3GPP standards group, targeting non-standalone and standalone! operations of NR
on frequency ranges below 6GHz and above 6GHz, supporting use cases including
Enhanced Mobile Broadband (eMBB) and URLCC. Specific to MAC, 5G NR extends
the LTE numerology to support diverse spectrum bands and deployment models, by al-
lowing different types of sub-carrier spacing and slot lengths (3GPP, 2018). The 10ms
frame structure of LTE with 1ms subframes is preserved. Moreover, NR specifies slot
based scheduling that supports a fixed length of 14 orthogonal frequency-division mul-
tiplexing (OFDM) symbols, with the possibility of slot aggregation, and non-slot based
scheduling (or mini-slot based) that allows for 7, 4, or 2 OFDM symbols. The airtime
allocation and scheduling mechanism proposed in this thesis can work with both slot

based and mini-slot based approach.

On the other hand, the IEEE 802.11ad standard specifies MAC and PHY proto-
cols for directional multi-gigabit communications exploiting the vast spectral resources
available in the 60GHz band (IEEE 802.11ad Std., 2014). The standard assumes mm-
wave stations are equipped with phased arrays or a set of switched beam antennas, to
form very narrow ‘quasi-optical’ beams that can mitigate the high signal attenuation
associated with mm-wave frequencies. Building upon 802.11ad, the 802.11ay draft
intends to multiply the mm-wave link capacity by employing 4-stream MIMO (Cer-
wall (ed), 2017). Medium access can be either contention based, whereby stations
alternate between listening in quasi-omnidirectional fashion, and directional multi-
gigabit (DMG) transmission mode that involves narrow beam forming; or scheduled,
as the standard specifies a Service Period (SP) based mode of operation, by which
SPs for different communicating pairs can be scheduled at the beginning of beacon

intervals, which are followed by actual data transmissions, as illustrated in Fig. 2.1.

Beacon Interval

DTI

BHI SP1 SP 2 SPn

Figure 2.1: Typical beacon interval followed by IEEE 802.11ad communications with service pe-
riods (SPs). Transmissions are scheduled during the beacon interval header (BHI) and take place

during the data transmission interval (DTI).

'Non-standalone NR uses LTE as control plane anchor, whereas standalone NR incorporates full
control plane capability.
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2.1.2 Network Slicing

Recent advances in network programmability enable to partition a physical network in-
frastructure into multiple logically isolated networks, which is also known as network
slicing. Such virtual slicing paradigm promises improved network utilisation, flexibil-
ity, and cost-efficiency. Therefore, 5G standardisation efforts have also shed light upon
the evolution towards sliced network architectures (3GPP, 2017b, 2016e), and indus-
try has seen many early demonstrations of the slicing technology to support emerg-
ing 5G applications (ZDNet.co.kr, 2015; Huawei Co., Ltd, 2016; Telefonaktiebolaget
LM Ericsson, 2018). Recent research suggests sharing mobile infrastructure among
virtual operators can achieve considerable improvements in terms of quality of ser-
vice (Samdanis et al., 2016; Sciancalepore et al., 2017, 2018), which is encouraging
further research in this area. Moreover, prototype implementations of radio access
network (RAN) slicing such as Orion (Foukas et al., 2017a) allow for the dynamic al-
location of radio resources, providing flexibility for resource allocation mechanisms to
fulfil diverse types of service level agreements (SLAs). This enables deploying differ-
ent flow rate allocation schemes in real 5G networks and optimising network utility (Li
et al., 2018), as I explain in Chapter 4. The utility framework proposed in this thesis
and the deep learning approach to solve the utility optimisation make my contribution

fundamentally different from these prior research efforts.

2.1.3 Emergency Networking

Intra- and inter-agency co-ordination is crucial in disaster response scenarios (Smith
and Dowell, 2000), and multi-media data communications plays a vital role in helping
first responders (Wang et al., 2016), e.g. police officers, medical teams, and firefight-
ers. Legacy private mobile radio (PMR) network services, e.g. push-to-talk and off-
network device-to-device communications are mainly voice-centric and allow only for
limited-speed (hundreds of kilobits per second) data communications (ETSI, 2011).
Satellite Internet, on the other hand, is subject to excessive latency — the average la-
tency in satellite data services offered by U.S. providers is around 600ms (Hanson,
2016). Therefore, this connectivity solution can hardly meet the real-time constraints
of mission critical applications. Previous work discusses the feasibility of adopting
LTE for high-bandwidth low-latency communication in emergency and disaster sce-
narios (Doumi et al., 2013). More recently, ongoing standardisation specifies sev-

eral technical aspects of isolated LTE E-UTRAN that incorporate local LTE evolved
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packet core (LTE-EPC) for public safety operations (3GPP, 2015). These efforts are
further reviewed and discussed in (Oueis et al., 2017). Oueis et al. identify a num-
ber of research perspectives including local EPC placement, radio resource control,
and network dynamics. Among these, this thesis tackles the network dynamics prob-
lem, towards which I propose a solution for controlling the mobility of airborne base
stations. Although current cell-on-wheels solutions are widely used to expand LTE
service coverage at specific events, such as the Super Bowl (Cellsite Solutions LLC,
2017), and off-the-shelf wearable base stations in backpacks are available on the mar-
ket (Air Lynx, 2018), there exist certain landscapes that are hard-to-reach and scenarios
that are extremely challenging for terrain vehicles, e.g. following floods, earthquakes,
or nuclear plant disasters.

Loon LLC initiated the idea of flying balloons carrying base stations into strato-
sphere and delivering LTE connectivity to unserved and underserved communities (Loon
LLC, 2018). Despite good intentions, the experiment has caused several incidences
(Wikipedia, 2018), including a balloon hitting power lines in a Washington town and
disrupting the power supply (Welch, Chris, 2018), due to the difficulty of manoeuvring
the balloons at the stratosphere level, especially when the airborne platforms are out of
battery. On the other hand, UAV's are much more robust, flying at lower altitudes, and
hence have received increasing interests from the telecom industry as potential bearers
of aerial base stations in temporary cellular deployment (FAA, 2017). In this context,
the research question of mobility management of a fleet of cellular base stations on
UAVs is tackled in Chapter 6.

2.2 Brief Survey of Related Work

1) Mm-wave Characterisation: Recent efforts to characterise mm-wave spectral re-
sources suggest that the 30-300GHz band enables the deployment of multi-Gbps link
rates (Rappaport et al., 2013b) with small form factor equipment. Hence, mm-wave
has been considered as a viable solution for wireless backhauling (MacCartney and
Rappaport, 2014; Dehos et al., 2014). Channel measurement efforts also confirm that
beamforming necessary to mitigate attenuation in mm-wave bands drastically reduces
interference, and links can often be regarded as pseudo-wired (Singh et al., 2011).
Mm-wave codebook based beamforming has so far been well studied (Wang et al.,
2009; Lee and Ko, 2011; Li et al., 2013; Zhou and Ohashi, 2012). Specifically, Wang

et al. propose a codebook based beamforming protocol to setup multi-Gbps mm-wave
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communication links (Wang et al., 2009). Li et al. formulate a global optimisation
problem to select the optimal beam pattern index at the transmitter and the receiver
that provides the best SINR, following which the authors then devise a gradient-based
approach to solve the optimisation problem (Li et al., 2013). Lee and Ko proposed a
multi-level codebook-based beamforming scheme with the goal of reducing the beam-
forming setup time (Lee and Ko, 2011). At each beamforming level, the algorithm
selects transmit and receive antennas by sending a number of training sequences with
different weight vectors from a pre-defined codebook and taking the feedback of the
best weight vectors options that optimise an effective signal-to-noise ratio (SNR) from
the receiver, and then passing on these vectors to the next following level until the
optimal selection of transmit and receive antennas are found.

Qiao et al. believe concurrent beamforming algorithm is desired for multi-hop
indoor mm-wave networks to reduce the setup time and increase the system through-
put (Qiao et al., 2015). These studies focus on beamforming techniques and target
wireless personal area networks, which differ from what I try to solve in this thesis, i.e.
scheduling for end-to-end data flows in small cell backhauling scenarios.

Further, Hur et al. design a beam alignment mechanism for mm-wave backhauling
scenarios, tackling the effects of wind-induced beam misalignment (Hur et al., 2013).
With mandatory use of beamforming, however, terminal deafness becomes a key chal-
lenge when scheduling transmissions/receptions (Nitsche et al., 2014).

Moreover, the throughput and energy consumption characteristics of different mm-
wave bands are studied in (Mesodiakaki et al., 2016). While I do not explicitly address
energy efficiency aspects in my work, I recognise that a certain degree of energy effi-
ciency can be inherently achieved through optimal airtime allocation and scheduling,

which are at the core of my contribution.

2) Medium Access Control in Ad-Hoc Networks with Directional Antennas: Pre-
vious MAC protocol designs for networks operating on legacy frequencies and employ-
ing directional transmission patterns are not feasible or insufficient to be employed in
mm-wave networks. Choudhury et al. present one of the few MAC schemes that con-
cern directional antenna patterns (Choudhury et al., 2006), namely MMAC. MMAC
employs multi-hop RTS to build up single hop directional links, then uses the direc-
tional link for transmissions. The focus of MMAC is hence to establish links between

two nodes, while multi-hop airtime scheduling and inter-flow fairness are not consid-
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ered in this work. Korakis et al. exploit the increased coverage of directional antennas
and propose a MAC protocol to tackle the deafness issue (Korakis et al., 2003). How-
ever, multi-hop scheduling and flow level fairness are not tackled by this protocol.
Bao and Garcia-Luna-Aceves propose a distributed receiver-oriented multiple ac-
cess (ROMA) protocol to achieve scheduled access in ad-hoc networks with directional
antennas (Bao and Garcia-Luna-Aceves, 2002). ROMA employs a type of multi-beam
adaptive array (MBAA), which allows a node to activate multiple transmission beams
at the same time. This MBAA scheme, however, focuses on link level scheduling,
whereas in backhauling scenarios, which are at the core of Chapter 3.1 of this thesis,
efficient resource allocation requires flow level scheduling. Zhang and Datta propose
a directional antenna based MAC protocol for scheduling at each node in sensor net-
works, employing carrier sensing (Zhang and Datta, 2005). The incentive of employing
directional antenna patterns there is mainly for energy conservation, and the directional
beamwidth considered is as large as 60°. Beamforming in mm-wave makes carrier
sensing difficult and hence this MAC approach is infeasible for mm-wave. Moreover,

flow level scheduling and fairness are not considered in the design of this protocol.

3) Medium Access & Scheduling in Mm-Wave Networks: Medium Access Con-
trol protocols for mm-wave communications can be grouped into two main classes —
contention-based and (pseudo-)scheduled. The IEEE 802.11ad standard (IEEE 802.11ad
Std., 2014) specifies both contention-based and Service Period (SP) driven (scheduled)
channel access mechanisms for communications in the unlicensed 60GHz band. Build-
ing upon 802.11ad, the 802.11ay draft aims to achieve link rates of up to 100Gbps,
by employing a number of enhancements, including 4-stream MIMO (Cerwall (ed),
2017). On the other hand the 3GPP New Radio (NR) specification extends the LTE
numerology by allowing different types of sub-carrier spacing and slot lengths (3GPP,
2018). The 10ms frame structure of LTE with 1ms subframes is preserved. It is worth
noting that both IEEE and 3GPP standards leave open the airtime allocation and multi-
hop transmission coordination tasks.

Based on the scheduled access specified in the IEEE 802.11ad standard (IEEE
802.11ad Std., 2014), Hemanth and Venkatesh analyse the performance of the SP
mechanism in terms of frame delay (Hemanth and Venkatesh, 2016). A line of work
builds upon the standard, specifying MAC protocol improvements for single-hop wire-
less local area networks (WLANSs) (Chandra et al., 2014; Sim et al., 2016b; Chen et al.,

2013). Chandra et al. employ adaptive beamwidth to achieve improved channel util-



2.2. Brief Survey of Related Work 19

isation (Chandra et al., 2014). Sim et al. exploit dual-band channel access to address
terminal deafness and improve throughput (Sim et al., 2016b). Optimal client associ-
ation and airtime allocation is pursued in (Facchi et al., 2017) to maximise the utility
of enterprise mm-wave network deployments. However, all of the above mentioned
works consider only single hop scenarios, whereas in this thesis, I tackle issues spe-

cific to mm-wave multi-hop scheduling and optimal resource management.

Coordinating TX-RX chains in dense small cell deployments, where data flows
typically traverse multiple hops, is of great significance, since mis-aligned beams at a
single hop will result in packet loss of an end-to-end data flow and hence wastage of
mm-wave resources. Therefore, rethinking MAC protocols for multi-hop backhauling
scenarios is required, taking into consideration mm-wave specifics. Towards multi-hop
mm-wave scenarios, a directional cooperative MAC protocol is introduced in (Chen
et al., 2013), where user devices select intermediate nodes to relay packets to access
points, in order to establish multi-hop paths that exhibits higher signal-to-noise-ratio
(SNR) than direct links. Further, Mandke and Nettles propose a dual-band architecture
for multi-hop 60GHz networks where scheduling and routing decisions are communi-
cated at 5.2GHz (Mandke and Nettles, 2010). These designs, however, do not solve the
airtime allocation and transmission scheduling problem, as investigated in this thesis.
Based on their feasibility study of in-band wireless backhauling, Taori ef al. present
a qualitative scheduling framework for inter-base station communications (Taori and
Sridharan, 2015). This resembles closely the Type 2 TDD scheme of LTE, with the dif-
ference that the authors apply it to in-band backhauling scenarios, whereas in the LTE
standard this is specified for cellular access only. Despite considering the implications
of terminal deafness, these designs do not tackle the airtime allocation problem. Relay
selection so as to overcome blockage and scheduling in mm-wave backhauls is tackled
in (Hu and Blough, 2017), with the aim of maximising throughput. However, neither

airtime allocation nor fairness are taken into account.

Several distributed opportunistic medium access schemes for mm-wave multi-hop
scenarios have been proposed to date (Sim et al., 2016a; Singh et al., 2010). In these
works, each base station chooses randomly a time to access an intended receiver, and
marks the results of success or failure. Then based on this experience the base stations
decide individually when to attempt to transmit next. Once a station finds a block of
time suitable for transmission, it will keep using the same period of time in the fol-
lowing schedules. MDMAC as proposed in (Singh et al., 2010) operates with a slotted

channel, whereby a station’s transmission can occupy one or multiple slots, but the
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slot duration remains fixed for all participants (20 us by default), which may harm effi-
ciency (Singh et al., 2010). Unslotted approaches (Bin)DLMAC are introduced in (Sim
et al., 2016a) to improve protocol efficiency and ‘learn” when to transmit in the pres-
ence of terminal deafness. Both schemes do not explicitly consider inter-flow fairness,
as each node seeks to transmit as much as possible. Our results confirm this leads to
poor performance for flows encountering lower capacity links. In contrast, the mech-
anism proposed in Chapter 3 not only improves throughput performance, but is also
significantly more fair, as the proposed method takes into account all flow demands,
link rates, and level of competition.

Su and Zhang solve optimal network throughput allocation heuristically in multi-
channel settings, without fairness guarantees (Su and Zhang, 2009). Ford et al. target
sum utility maximisation in self-backhauled mm-wave setting (Ford et al., 2015). Sem-
inari et al. formulate the sharing of mm-wave backhauls as a one-to-many matching
game, seeking to maximise the average sum rate (Semiari et al., 2017). Zhu et al.
propose a maximum independent set (MIS) based scheduling algorithm to maximise
QoS in mm-wave backhauls (Zhu et al., 2016). Similarly, Niu et al. propose MIS
based scheduling that aims to minimise the energy consumption (Niu et al., 2017). A
joint scheduling and power allocation problem is also solved with MIS in (L1 et al.,
2017a). In this body of work scheduling is performed with the explicit goal of achiev-
ing concurrent transmissions among non-interfering links. The WIHAUL mechanism
I propose allows for concurrent transmissions by default. Moreover, my solution not
only improves throughput performance, but also explicitly addresses fairness, while
I take into account all flow demands, link rates, and the level of competition among
them. In particular, I address airtime allocation and scheduling in multi-hop mm-wave

networks using the max-min fairness criterion.

4) Fairness in Multi-hop Wireless Networks: Bertsekas and Gallager consider max-
min fairness for flow control in wired networks (Bertsekas and Gallager, 1992) and
subsequently Le Boudec and Radunovic demonstrate that max-min fairness is a ge-
ometric property of the set of feasible allocations (Radunovi¢ and Le Boudec, 2007).
The 802.11 rate region is proven log-convex, and station attempt probabilities and burst
sizes in 802.11 mesh networks are derived for max-min fair regimes in (Leith et al.,
2012). This, however, only holds in multi-channel mesh topologies where stations
employ multiple interfaces, which is impractical with small form factor mm-wave de-

vices equipped with a single interface. Wang et al. argue that channel time rather
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than flow rate should be used with the max-min allocation criterion in wireless multi-
hop networks and accordingly propose a new definition of max-min fairness (Wang
et al., 2008). Unfortunately, under this definition, flows traversing larger number of
hops will, by design, obtain considerably smaller throughput than those close to gate-
ways. This implies inferior service performance for distant users, hence the approach
is ill-suited to carrier-grade backhauls.

Lan et al. propose a unified fairness measure that enables to explicitly quantify
max-min fairness, which is largely perceived as qualitative (Lan et al., 2010). This
general measure of fairness is employed in this thesis to derive a max-min fair metric
and evaluate the gains achieved by our proposal. To add further perspective I also

resort to economic notions of inequality, i.e. the Gini coefficient (Gini, 1921).

5) Network Slicing. Network slicing allows logical partitioning of shared physical
network infrastructure and is envisioned as a key technology for 5G to meet the di-
verse service requirements of numerous emerging mobile applications (Alliance, 2016;
Zhang et al., 2017b; Foukas et al., 2017b; Ordonez-Lucena et al., 2017).

Samdanis et al. and Sciancalepore et al. showed in their recent studies that signif-
icant quality of service improvements can be achieved by sharing mobile infrastruc-
ture among virtual operators (Samdanis et al., 2016; Sciancalepore et al., 2017, 2018).
In (Samdanis et al., 2016), a slice broker concept which enables mobile infrastructure
providers to dynamically manage the shared network resources is proposed. Based on
this concept, a machine learning approach that addresses admission control in sliced
networks is given in (Sciancalepore et al., 2017). An online slice brokering solution
is studied in (Sciancalepore et al., 2018) with the goal of maximising the multiplexing
gain in shared infrastructure. These efforts, however, do not tackle different service
requirements of diverse application scenarios, which instead I address in Chapter 4.

3GPP standards has specified a simple form of slicing called dedicated core net-
works (DECOR) (3GPP, 2017a). There has been significant research effort implement-
ing slicing functionalities in both core and radio access parts of the cellular networks
(Kim et al., 2014; Nikaein et al., 2015; Nakao et al., 2017; Foukas et al., 2017a).
Foukas et al. present a prototype implementation of radio access network (RAN) slic-
ing system namely Orion (Foukas et al., 2017a). Building upon open-source LTE plat-
form, Orion is the first RAN slicing system that enables functional and performance
isolation of slices, while enabling dynamic allocation of radio resources, providing

flexibility for resource allocation mechanisms to fulfil diverse types of service level



22 Chapter 2. Background and Related Work

agreements (SLAs). These efforts are important steps towards the deployment of 5G
network slicing, while they also open up new challenges of resource allocation for

diverse application use cases, which will be addressed in Chapter 4.

6) Network Utility Maximisation (NUM). Optimising a mixture of concave and non-
concave utilities for inelastic traffic has been studied in (Fazel and Chiang, 2005;
Hande et al., 2007; Chen et al., 2011). Fazel et al. propose a sum-of-squares method to
solve non-concave NUM problems that tackle primarily polynomial utility (Fazel and
Chiang, 2005). Hande et al. study the sufficient conditions for the standard price-based
(sub-gradient based dual) approach to converge to global optima with zero duality gap,
which relies on capacity provisioning (Hande et al., 2007). Chen et al. consider NUM
with mixed elastic and inelastic traffic, and develop a heuristic method to approximate
the optimal solutions (Chen et al., 2011). Recent work investigates a convex relaxation
of polynomial NUM and employs distributed heuristics to approximate the global op-
timal allocation (Wang et al., 2017). Udell and Boyd define a general class of non-
convex problems as sigmoidal programming and propose an approximation algorithm
to solve these (Udell and Boyd, 2013).

The heuristics methods mentioned above share the limitation of convergence times
that are in the order of seconds, which can hardly meet the latency requirements of 5G
networks. In contrast, the deep learning approach presented in Chapter 4 infers close

to optimal rate allocations within milliseconds.

7) Transport Protocols in Wireless Networks. Originally designed for wired net-
works with low bit error rate, TCP struggles to adapt to wireless environment and often
suffer from low throughput and frequent disconnection. Existing studies on TCP be-
haviour in LTE-EPC networks suggest that a sudden load increase in a cellular network
will lead to significant bandwidth reduction and delay increase (Nguyen et al., 2014).
Due to the uncertainty specific to wireless networks, especially varying link quali-
ties, TCP retransmission leads to larger overhead and network inefficiency (Huang
et al., 2013). Zhang et al. argue that a small handover offset leads to better through-
put performance in spite of the increasing probability of ping-pong handover (Zhang
et al., 2012). Challenges of optimising cell-edge SINR are presented in (Fujitsu, 2011),
where it is suggested that inter-cell interference coordination schemes should be em-
ployed in PDCCH.

Over the years, there have been extensive research efforts on initiating new TCP
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congestion mechanisms to mitigate the performance degradation of TCP in wireless
networks (Balakrishnan et al., 1996; Brown and Singh, 1997).

A number of work take split-connection approach (Bakre and Badrinath, 1988;
Brown and Singh, 1997). Indirect-TCP (I-TCP) (Bakre and Badrinath, 1988) divides
each end-to-end TCP connection between a sender and receiver into two separate con-
nections at the base station, i.e. one TCP connection between the sender and the base
station, and the other between the base station and the receiver, each having separate
acknowledgements. The authors show that I-TCP achieves improved throughput when
compared with legacy TCP over wireless links. However, such separation does not
address the fundamental issue of TCP performance degradation on wireless links and
I-TCP in particular has been criticised for producing time-outs causing stalls of the
sender (Balakrishnan et al., 1996). In addition, under the split-connection approach,
every packet incurs the overhead of going through TCP protocol processing twice at

the base station, which is not resource efficient.

The seminal work by Floyd et al. initiates the idea of explicit congestion notifi-
cation (ECN) (Floyd, 1994), which, as the name suggests, involves taking congestion
indication feedback from the network to decide whether to react to packet loss. Since
then, several works have been build upon the ECN semantics. Katabi et al. propose
a new congestion control algorithm namely XCN, by which the sender is informed
about the degree of congestion at the bottleneck instead of receiving binary feedback
about the congestion state, as in ECN (Katabi et al., 2002; Ramani and Karandikar,
2000; Athuraliya et al., 2001). XCN demonstrates fair bandwidth allocation, high util-
isation, small standing queue size, and near-zero packet drop, with both steady and
highly varying traffic. Moreover, Ramani and Karandikar propose a TCP protocol
that tries to determine the cause of packet drop in wireless networks, based on ECN.
This approach incorporates a number of modifications, mainly at the transmitting side,
including queue monitoring. The proposed mechanism achieves throughput improve-
ment over unmodified TCP (Ramani and Karandikar, 2000). Athuraliya et al. suggest
a new active queue management scheme, namely random exponential marking (REM),
to decouple the congestion measure based on ECN from performance metrics such as
loss, queue length, or delay (Athuraliya et al., 2001). The proposed method achieves
good utilisation of resources with slightly compromised loss and delay.

To the best of my knowledge, the work presented in Chapter 5 is the first to study
transport protocols’ performance in LTE networks with a specific focus on cell edge

users and the issue introduced by control plane errors, and uncover potential through-
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put gain by enabling the RLC AM mode in the LTE protocol stack .

In a recent study, Polese et al. look into the cell-edge performance in mm-wave
frequency bands and observe similar TCP throughput degradation as I present in Chap-
ter 5, revealing a reduction when MAC HARQ is disabled (Polese et al., 2017). This
study further investigates the performance of multi-path TCP connections leveraging
different radio access interfaces on mm-wave and legacy frequencies, and shows that
multi-path TCP flows traversing both legacy frequency and mm-wave links achieve
higher throughput and lower latency at mid-cell (100m) and cell-edge (150m) dis-
tances, when compared to single-path or multi-path TCP flows traversing mm-wave
only links.

Furthermore, the IETF has put standardisation effort into Google’s QUIC trans-
port paradigm(Hamilton et al., 2016), which is essentially an UDP based protocol that
exploits multiplexed connections between two UDP endpoints. QUIC demonstrates
reduced latency and additional data loss avoidance, as compared to TCP in lossy chan-
nel conditions. However, QUIC has also been criticised for being less competitive
when compared with TCP in small loss rate, large buffer, or large propagation delay
scenarios (Yu et al., 2017). In 2016, Google developed a new congestion control algo-
rithm named bottleneck bandwidth and round-trip propagation time (BBR) (Cardwell
et al., 2016). BBR is a model-based congestion control mechanism that maintains an
explicit model of the network using the recent maximum bandwidth and round-trip
time experienced by the outbound packets. Despite achieving higher throughput and
lower latency, BBR is nonetheless criticised for being unfair to other flows and caus-
ing considerate packet loss (Hock et al., 2017). The question of what the best transport

protocol for the ever changing Internet ecosystem remains open (Huston, 2018).

8) Airborne and Emergency Networking. Oueis et al. give a technical overview of
LTE operation for public safety (Oueis et al., 2017), which provides useful insights for
the work on mobile base stations control, presented in Chapter 6. Fotouhi et al. pro-
pose a heuristic based mobility model to improve spectral efficiency in drone-based
base station deployments. However, the authors consider only fixed user group cov-
erage without handovers (Fotouhi et al., 2017). Orsino et al. highlight that drones
carrying radio transceivers improve network coverage and bring higher data rates to
challenging locations (Orsino et al., 2017). Grossglauser and Tse study the per-user
throughput in mobile ad-hoc networks and conclude that performance can be improved

dramatically when base stations are mobile (Grossglauser and Tse, 2002). Unlike the
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findings presented in Chapter 6 of this thesis, these works fail to consider realistic
deployment aspects of airborne base stations and the challenges associated with the
mobility management task, including practical group mobility behaviour and potential
handover effects.

The SWARMIX Project (SWARMIX.org, 2014) delivered a number of studies con-
cerning synergistic interactions between heterogeneous agents including robots, hu-
mans, and animals. Part of this project investigates ad-hoc wireless networking aspects.
Specifically, based on empirical studies of micro aerial vehicle networks, Asadpour et
al. identified potential research directions including how controlled mobility could
bring benefits at each network layer (Asadpour et al., 2014). This links to my study
of mobility control to achieve connectivity performance gains for users. In (Asadpour
et al., 2013), the authors present an implementation of a 2-hop UAV network that is
capable of searching for a missing person via smartphone emitted beacon messages,
and streaming video of the area of interest via the 2-hop network. This study demon-
strates the feasibility of employing UAV mounted Wi-Fi access points in emergency
settings, but neither addresses signal coverage for a handful of ground users with com-
plex movement, nor the mobility management of UAV's, which are the main concerns
of my study. Path planing of UAVs, as tackled in (Flushing et al., 2014; Di Caro et al.,
2014) and other research papers in the field of autonomous robotics, are a school of
study that relates to finding the optimal path to a destination subject to certain con-
strains, such as maximum travel distance. Although these works cover movement con-
trol of UAVs, they consider a different setting than emergency wireless networking, as

this thesis does, where no prior knowledge of a target destination can be obtained.

9) Deep Learning in Networking and Network Resource Management. Recent
improvements in computational power and the growing numbers of public data sets
have led to a range of deep learning applications in the computer and communications
networking domain, intelligent mobile networking is becoming an important research
direction to enable service requirements promised by 5G (Kibria et al., 2017; Zhang
etal., 2018; Agiwal et al., 2016; Gupta and Jha, 2015). For instance, Kato et al. devise
a fully-connected neural network to find optimal routes in wired/wireless heteroge-
neous networks (Kato et al., 2017). Zhang et al. employ dedicated convolutional neural
networks (CNNs) to infer fine-grained mobile traffic consumption from coarse traffic
aggregates (Zhang et al., 2017a), improving measurement resolution by up to 100 x

while maintaining high accuracy. CNNs have also been employed in (Zhang and Pa-



26 Chapter 2. Background and Related Work

tras, 2018), where the authors incorporate a 3D-CNN structure into a spatio-temporal
neural network, to perform long-term mobile traffic forecasting. Moreover, following
advances in deep reinforcement learning (DRL) such as the asynchronous advantage
actor-critic method (A3C), which achieved remarkable performance in game-play ap-
plications (Mnih et al., 2016), Mao et al. employed the A3C technique for adaptive
video streaming (Mao et al., 2017).

Several studies employ deep learning for network resource management in various
contexts. Ying et al. formulate the wireless channel as a finite-state Markov channel
and employ Q-leaning to obtain best user selection policy in interference alignment
wireless networks (Ying et al., 2018). The proposed approach therein achieves higher
sum rate and energy efficiency over benchmark solutions. Xu et al. present a deep
Q-learning based DRL framework for power allocation in cloud RANSs. Specifically,
a DRL agent determines the ON/OFF mode of the remote radio heads based on the
current mode and user demand. A simulation campaign demonstrates improved power
efficiency as compared to benchmark solutions. Ferreira et al. propose a hybrid radio
resource allocation management control algorithm based on a multi-objective rein-
forcement learning frame work, i.e. Action-Reward-State-Action (SARSA) in cogni-
tive communications, which requires reduced computational resources (Ferreira et al.,
2017). Sun et al. propose to utilise the input and output of a resource allocation algo-
rithm as an unknown non-linear mapping and employ a deep neural network to approx-
imate such mappings under interference-limited wireless network environments (Sun
et al., 2017). The authors demonstrate that via imitation learning, the inferences made
by a neural network resemble closely the teacher with significantly reduced runtime.

To the best of my knowledge, the work presented in Chapter 4 is the first that em-
ploys deep learning to solve utility optimisation problems in sliced backhauls. Further,
the work presented in Chapter 6 is the first to employ DRL for airborne base station

mobility control.



Chapter 3

Resource Allocation in Mm-wave

Backhaul Networks

The mobile networking community is pursuing densification of small cell deployments
to address the capacity crisis inherent to the projected exponential increase in mobile
data traffic. Connecting to the Internet tens of thousands of base stations is non-trivial,
especially in urban scenarios where optical fibre is difficult and costly to deploy.

Meanwhile, mm-wave communication technology has been advancing rapidly in
recent years, demonstrating up-to multi-Gbps link rates and is promoted by both regu-
larisation bodies (Ofcomm, 2018), and standardisation efforts such as IEEE 802.11ad
(IEEE 802.11ad Std., 2014), 802.11ay (Cerwall (ed), 2017), and 3GPP 5G NR (3GPP,
2018). The mm-wave spectrum is a promising candidate for inexpensive multi-Gbps
wireless backhauling, i.e. a solution favoured by industry stakeholders (Facebook
Inc., 2018; Qualcomm Technologies Inc., 2018), but exploiting this band for effec-
tive multi-hop data communications is challenging. In particular, resource allocation
and scheduling of very narrow transmission/reception beams requires to overcome ter-
minal deafness and link blockage problems, while managing fairness issues that arise
when flows encounter dissimilar competition and traverse different numbers of links
with heterogeneous quality.

In this chapter, I propose WIHAUL, an airtime allocation and scheduling mecha-
nism that overcomes these challenges specific to multi-hop mm-wave networks, guar-
antees max-min fairness among traffic flows, and ensures the overall available back-
haul resources are fully utilised. An evaluation of the proposed WIHAUL scheme over
a broad range of practical network conditions is presented, demonstrating up to 5x in-

dividual throughput gains and a fivefold improvement in terms of measurable fairness,

27
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over recent mm-wave scheduling solutions.

3.1 System Model

I focus on dense mobile broadband deployments where B fixed base stations provide
wireless access to mobile users with different traffic demands. While serving a number
of smart devices that consumes or generate data flows, base stations are connected via
mm-wave links to wired Internet gateways, possibly over multiple hops.

PHY Layer Considerations: Although PHY layer optimisation is outside the
scope of this work, this section briefly summarises the PHY aspects that are relevant to
the design of WIHAUL. Theoretically, the proposal is compatible with either MIMO
antenna arrays via beamforming, as well as fixed horn antennas (fixed or mechani-
cally steered). I nevertheless envision beamforming to be a more practical solution for
backhauling of densely deployed cellular base stations, especially in urban scenarios,
for a number of reasons. First of all, beamforming allows for rapid beamswitching.
As one may argue that a base station with multiple fixed horn antennas can achieve
transmission towards multiple directions as well, this notwithstanding incurs larger
form factors when compared with beamforming infrastructures such as steerable ar-
rays (Singh et al., 2011). More importantly, beamforming copes better with dynamic
routing by forming new links to tackle blockage at established links or sudden changes
in link conditions, which are almost inevitable in mm-wave. Furthermore, horn anten-
nas are usually subject to large beamwidth, whereas beamforming allows for narrow
beamwidths that are less susceptible to inter-link interference and therefore offer bet-
ter spatial reuse. In fact, a number of affordable off-the-shelf commercial devices sup-
porting mm-wave, e.g. TP-Link Talon AD7200 Router (TP-LINK, 2017) and Mikrotik
wAP60 (Mikrotik, 2017), employ phased array to perform beamforming.

Assume each backhaul node employs N TX/RX antennas and adopt the mm-wave
MIMO channel model proposed in (Alkhateeb et al., 2014a), where hybrid analog/digital
precoding is employed. By (Alkhateeb et al., 2014a), the channel is subject to limited
scattering and geometric models are generally applicable (Rappaport et al., 2013a,

2012). The channel matrix can be expressed as

H=

foN"x L eAOA H eAOD
P, Zalarx{ 10 )an(6777) (3.1
=1



3.1. System Model 29

where P; denotes the average pathloss between the transmitter and receiver, L is the
number of scatters, and oy is the complex gain of the /-th channel, following Rayleigh
distribution o; ~ N(0,Pg),VI € {1,2,....L} , and Py is the average power gain. More-
over, 097 € [0,271] and 6/'%* € [0,27] denote the azimuth angles of the departure and
arrival (AOD and AOA) respectively, and a,x(e;‘OD ) and arx(e‘?OA) are the antenna ar-
ray response vectors at the transmitter and the receiver. While extensions to 3D beam-
forming is possible (Ayach et al., 2014), I focus here on horizontal 2D beamforming by
neglecting the elevation angle. Assuming uniform linear arrays, the antenna response

vector can be written as:

e (B107) = L _[1,os2n/Msin(@} ")

VN

where A is the wavelength, and d is the distance between antenna elements. The re-

m’ej(Nm—l)(2n/k)dsin(e¢0D)]T (3.2)

Y

sponse vector of the receiver antenna array, i.e. a,,(6/?!) has a similar form.
According to (Alkhateeb et al., 2014a), with efficient design of the precoders (Fpp
for baseband and FgF for radio frequency (RF)) and combiners (Wpgp for baseband and

Wirr for RF), the achievable rate of the MIMO system is formulated as:

P__
R =log, |Iy, + —SRn 'WhH W HF g F ggFH F HI W Wp|, (3.3)

N;
where the post-processing noise covariance matrix R, is given by WgBWf{FWRFWBB.

MAC Paradigm: My work targets mm-wave systems where channel multiplex-
ing is performed following time division principles. As such, the proposed solution is
applicable to both TDMA-based cellular backhaul scenarios and single-/multi-hop de-
ployments based on the IEEE 802.11ad (IEEE 802.11ad Std., 2014) or 802.11ay (Cer-
wall (ed), 2017) working with SPs, e.g. in rural and community networks. With these
in mind, this chapter addresses rigorously the airtime allocation and TX/RX beam
scheduling in multi-hop backhaul networks. The proposed WIHAUL solution observes
a periodic superframe/beacon interval structure where beamform training information
is exchanged and TX/RX scheduling is performed at the start of a superframe, fol-
lowing which link transmissions take place as per computed schedules, as depicted in
Fig. 3.1.

Centralised Control: I envision a centralised architecture, whereby a controller
has full knowledge of the network topology, periodically collects link rate and flow de-
mand information, and subsequently performs airtime allocation and beam scheduling.

In practice, centralised control is achievable through software-defined network (SDN)
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Superframe
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(Beamforming &) l
scheduling

X1 TX 2 X n

Figure 3.1: TDM superframe structure observed bv WIHAUL. Beamform training, scheduling
and control message exchange take place periodically at the start. Data transmissions (possibly of
different durations) follow. The structure can equally apply to 3GPP NR and IEEE 802.11ad with
SPs.

primitives (Haleplidis et al., 2015), for instance running OpenFlow (Haque and Abu-
Ghazaleh, 2016) over a dedicated narrow-band low frequency channel. Similar out-
of-band control schemes have been previously used in wide spectrum networks (Gian-
noulis et al., 2013). Assume the controller is also responsible for computing paths py
for all flows k traversing the backhaul, which is orthogonal to the problem this chapter
attacks and thus not explicitly considered herein. This is aligned with previous work
on mm-wave backhauling where path computation and link scheduling are dealt with
separately (Seppénen et al., 2016). An alternative approach is to tackle the problem
using decentralised approach to achieve scheduled access. This however, as will be
discussed further in this Chapter, is subject to a convergence time which introduces
additional overhead every time the system need to recompute, and as we will show in
the simulation campaign, the state-of-the art solutions are outperformed by the pro-
posed approach of this chapter. I give an overview of the overall envisioned system in
Fig. 3.2.

The objective here is to allocate the airtime resources available on the mm-wave
backhaul links to aggregate traffic flows and co-ordinate transmissions among base
stations. Flows either enter the network via gateways, are relayed by intermediary
hops, before reaching the end users (downlink), or originate at different base stations
and are forwarded externally by the gateways (uplink). The problem pursued in this
chapter is challenging and fundamentally different to previous efforts in multi-hop
wireless networks (e.g. (Wang et al., 2008)), since the backhaul system is prone to
terminal deafness and a receiver may experience secondary interference only when
situated in the range and on the direction of another active beam. Since deployments
with small form factor base stations equipped with a single mm-wave interface are
considered, intra-flow competition occurs and fairness issues arise as flows are relayed

by base stations, unlike in multi-radio mesh networks (Leith et al., 2012). Meanwhile,
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Figure 3.2: High-level overview of the envisioned system. WIHAUL runs on the controller and
computes flow airtime allocations and schedules, based on topology information and paths com-
puted by routing logic. Scheduling hierarchy and airtimes sent to a scheduling coordinator, which
dictates the TX/RX timing to backhaul nodes.

concurrent transmissions on non-interfering links is feasible, which allows for spatial

reuse and appropriate network utilisation at a lower cost.

3.2 Problem Formulation

The goal of this chapter is to devise a way of distributing the mm-wave backhaul
resources among flows, such that network utilisation is maximised while flows with
lower demand or originating/terminating further away from the gateway are not throt-
tled. My focus is on the MAC layer and I assume PHY layer aspects such as power
allocation, codebook design, or beamform training can be dealt with separately. This
assumption is reasonable, because PHY optimisation will ultimately result in different
capacity constraints imposed on the MAC layer. Mm-wave specific aspects such as link
blockage are inherently captured in my formulation through constraints. I further take
into account potential link-blockage conditions when allocating resources, circumvent-
ing these as we explain below. As such, I work with the max-min fair criterion (Bert-
sekas and Gallager, 1992), seeking to ensure flow demands are fulfilled in increasing
order where possible, whilst any remaining network capacity is shared among flows
with higher demands. That is, I aim to maximise the end-to-end throughput r; of each
aggregate flow k, subject to individual demands dj, whilst any flow allocation increase

would not harm others with already smaller or equal throughputs. To the best of my
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knowledge, max-min fair resource allocation in mm-wave backhauls, which present

unique terminal deafness challenges, has not been considered previously.

Notation Description

F The set of flows traversing the backhaul
Fa Active flows, i.e. the set of flows that have not been allocated resources
k Index of an aggregate flow

Tk End-to-end throughput of flow k&
dy Demand of flow &
Dk The path traversed by flow k

li j Link between stations i and j
Skii,j The segment of flow k traversing link /; ;
Tk, j Airtime assigned to flow segment s ; ;

Gy A clique with index ¢

Table 3.1: Notations and descriptions.

The mathematical notations used in this section is listed in Table 3.1. Formally,
by denoting ¥ the set of flows traversing the backhaul, p; the path of flow £, i.e. the
sequence of links this follows from source to destination (within the backhaul), and

considering flow k is assigned airtime 7 ; ; on link /; ;, I want to find the vector
t:={tjlk € F,lijC pr}

that achieves max-min fair allocation of flow throughputs. This requires to iteratively

solve the following optimisation problem:

t' = i .
U arg {nax mkln 7 (3.4)
ke?g7 f_qC,‘T

s.t. ry < dy,Vk € Fg, 3.5)

Tk <1,Vke Fa.¥C, € C. (3.6)
Ci
skvl-_jqu LJ

In the above, F4 C ¥ denotes the set of flows that have not yet been allocated end-to-
end resources (active flows) and (3.5) represents a demand constraint that ensures any
allocated flow rate does not exceed the corresponding demand, so that no resources
will be left unused. s ;; in (3.6) represents the segment of flow k traversing link

l; j for which 7, ; ; airtime is allocated. c; ; denotes the maximum achievable data rate
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between an (i, j) base station pair, and I work with aggregate data traffic flows between
base stations and the gateway.

As single transceiver stations can only send to, or receive from one neighbour at a
time, let us construct a conflict graph G(V, E), where a flow segment corresponds to
a vertex v € V. An edge e € E exists between any two vertices, if the corresponding
flow segments cannot be simultaneously active, either because they traverse the same
node or because they may cause secondary interference onto one another, due to beam
alignment and transmission range. C, denotes a clique, which follows the definition

given below.

Definition 1. A ‘clique’ is the set of all flow segments that cannot be active simultane-

ously.

Note that a flow segment can belong to multiple cliques and denote C the set of all
cliques. 1 exemplify the conflict graph and clique notions with the simple topology
depicted in Fig. 1.1, for which the equivalent conflict graph is shown in Fig. 3.3. Ob-
serve that two cliques exist in this example and the segments of flows 1 and 2 over
link I3 4, 1.e. 5134 and s; 3 4, simultaneously belong to both. ! Returning to the prob-
lem to be solved in this chapter, by (3.6) I introduce a clique constraint that guaran-
tees the total time consumed by all flow segments in a clique does not exceed 1, i.e.
Yo eC, hij < 1,Vk € Fa,9Cq € C.

In solving this problem, it will also prove useful to work with the notion of conflict

node, defined on the actual network topology as below.

Definition 2. In a backhaul network, a ‘conflict node’ is a base station that forwards
traffic on behalf of others.

For the example shown in Fig. 1.1, base stations 3 and 4 are conflict nodes.

Solution Existence

To verify whether a solution to the problem (3.4)—(3.6) exists, i.e. max-min fair allo-
cation in a multi-hop mm-wave network is feasible, I first characterise the network’s

rate region.

Lemma 1. The rate region of a multi-hop mm-wave backhaul network is convex.

'In this example, cliques are only formed as a results of single-transceivers operating at each node
and no secondary interference can be observed. Had node 1 been on the same direction as the (4,6) link,
51,1,3 would have formed a third clique with s145,52 4,6, and 53 46.
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Figure 3.3: Conflict graph corresponding to the topology in Fig. 1.1. Each vertex corresponds to

a segment of a flow k£ between base stations i and j. Cliques highlighted with dashed lines.

Proof. Since I consider transmissions between base stations are precisely scheduled,
channel access in a clique can be seen as a single-hop time division multiplex (TDM)
instance, which is known to have a convex capacity region (Cover and Thomas, 2006).
The throughput of any sub-flow sy ; ; in a clique C, is upper bounded by the minimum
between the throughput allocated in the clique C,_; traversed previously and the total
flow demand d. The network rate region is obtained by the appropriate intersection of

the rate regions of the component cliques. Thus it is convex. 0
The following key result follows.

Corollary 1. Max-min fair allocation in multi-hop mm-wave networks exists and it is

unique.

Proof. Following Theorem 2 in (Jaffe, 1981), Gafni and Bertsekas demonstrate that if a
max-min fair rate allocation vector exists, then it is unique (Gafni and Bertsekas, 1984,
p.1011). Radunovic and Le Boudec, prove by contradiction that compact convex sets
are max-min achievable (Radunovi¢ and Le Boudec, 2007). As per Lemma 1 above,
the rate region of a scheduled mm-wave backhaul is convex. Therefore a max-min fair

rate allocation vector exists in mm-wave backhauls and it is unique. [

Finally, the rate region has the free disposal property (Radunovi¢ and Le Boudec,

2007) since each element of the rate vector r = {r; | k € F} is lower bounded by



3.3. WiHaul: Max-min Fair Backhauling 35

zero and any non-zero feasible allocation can always be decreased. It follows that a
progressive filling algorithm can be employed to find the solution to the max-min fair

allocation problem with mm-wave particularities.

3.3 WiHaul: Max-min Fair Backhauling

This section presents a max-min fair multi-hop mm-wave backhauling mechanism,
namely WIHAUL. This consists of a progressive filling algorithm that solves the
optimisation problem (3.4)—(3.6) in polynomial time, and a light-weight scheduling
protocol that distributes airtime solutions among base stations, ensuring they commu-
nicate at the right time for the computed duration. As an alternative, a brute-force
based approach could be employed to exhaustively search for a max-min allocation in
the feasible space, but computational complexity would increase exponentially as the
number of flows or the demand vary. The proposed solution handles mm-wave specific
PHY impairments such as link blockage, as the progressive filling routine updates air-
time allocation as a result of changes in the rate regions when such events occur. The
scheduling procedure further handles terminal deafness (and secondary interference),
as it builds on the notion of clique introduced above, which ensures appropriate spatial
reuse while transceivers and receivers always have their beams aligned when intending

to communicate.

3.3.1 Progressive Filling Algorithm

Algorithm 1 summarises the progressive filling procedure proposed to achieve max-
min fair allocation of the backhaul resources under clique and demand constraints, and
I detail its operation next. The progressive filling starts with all flow rates equal to zero
and considering none of the aggregate flows have been allocated resources (lines 1-2).
Flows for which an allocation was not performed are called active flows. The algorithm
gradually increases flow rates simultaneously, in steps of size € Kbps (line 4) until one
or more flows either meet their demands (line 6) or activate a clique constraint (line 13).
Note € is a configurable parameter whose magnitude impacts on algorithm runtime. If
a flow’s demand d, is satisfied, Algorithm 1 freezes the allocated rate r; to the demand
and remove that flow from the active set (line 8), thereafter considering it inactive and
its resources frozen.

When a clique is fully utilised, Algorithm 1 will stop increasing the rates of the
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Algorithm 1 Progressive Filling

1:

Sl

16:
17:
18:

19:
20:

21:
22:
23:
24:
25:

26:

27:
28:
29:
30:

re = 0,k

c Fa=F

while 77 # 0 do
rt+=¢&Vfi € Fa

for Vf, € ¥4 do
if Ty > dk then
rki=di;

Fa=Fa\{fi}
end if

end for
forg=1:|C|do

tij = Tk/Cijs Vskij € Cy

if Z.Yk‘l‘./‘ECq tk,l,j Z 1 then
Heft = 1
S=0

for Vs ; € Cy do
if fy € 7\ 74 then

Neft = Neft — 1i,j k

else
S:S—i-l/cid'

end if
end for
R = tert/S
for Vi, € 7 do

re=R; trij=re/cij
Freeze ri; Fa = Fa\{fc}

end for
end if
end for

end while
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> Loop until all flows allocated
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flows with same step

> Flow demand satisfied

> Remove flow from active set

> Loop over all cliques

> Time consumed by

each flow segment in C,
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> Sum of inverse capacities of
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> Rate to allocate for all active flows
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> Freeze rate
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flows traversing it and proceed with computing from scratch the rates should be as-
signed according to the remaining airtime budget. To this end, Algorithm 1 subtracts
from the total available airtime, i.e. 1 (line 14), the fractions already reserved for inac-
tive flows (line 18) and sum up the inverse of the link capacities corresponding to active
flows in that clique (line 20). The latter will allow us to provide all active flows with
the same rate R (line 23), which under heterogeneous link rate conditions translates
into allocating airtimes to each sub-flow that are inversely proportional to the traversed

link’s capacity (line 25), i.e.

Heft

1
Ci.j 2, P
Cl.m

Sk 1m€FanCy

lkyij =

It is straightforward to verify that airtimes #; ; ; above sum to fif;, as required. Subse-
quently, the algorithm freezes the rates r; of flows in clique C,; and remove them from
the active set (line 26).

Algorithm 1 repeats this procedure for the remaining active flows, until meeting
their demand or activating other clique constrains. The progressive filling algorithm
terminates when the set of active flows is empty (line 3). At that point I have obtained
the airtimes to be allocated for each flow on each traversed backhaul link, in order to
fulfil the max-min fair allocation of the rates.

Algorithm 1’s runtime is a function of the highest flow rate divided by the step-
length, which recall is configurable, and the total number of flows. Therefore the
algorithm solves the max-min fairness optimisation problem posed in polynomial time.

The results presented in Sec. 3.4.7 confirm this assessment.

3.3.2 Scheduling Procedure

Terminal deafness is a major challenge in mm-wave networks. Therefore, unless sta-
tions know to which neighbour to steer their beams, when, and for how long, they may
be locked out, which would lead to frame loss and overall performance degradation.
Such degradation may also occur when beams of different communicating pairs par-
tially overlap, resulting in secondary interference. Algorithm 1 described previously
addresses the computation of airtimes for each flow segment, in order to attain max-
min fair rates. To convey the computed airtimes and overcome TX/RX issues, i.e.

deafness or secondary interference, WIHAUL employs a network-wide co-ordination
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procedure based on a scheduling hierarchy. This enables a centralised controller to
dictate when nodes can transmit to others without conflict and in which order, so as to
maximise spatial reuse.

Algorithm 2 gives the pseudocode of WIHAUL’s scheduling operation, which I ex-
plain next with the example topology shown in Fig. 1.1. I assume a central controller
(typically placed at the gateway; here node 6) has full knowledge of the network topol-
ogy, including the hop distance to each base station, which of these are conflict nodes

(i.e. have more than one neighbour), as well as their addresses, i.e.

(1) H;: hop distance from node i to the gateway,
(2) S;: node i’s conflict state,

S 1, ifiis aconflict node,
l‘ prm—

0, ifiisaleaf node;

(3) A;: node i’s unique ID (e.g. its IP address).

With this information and the airtime shares computed by Algorithm 1, the controller
constructs a hierarchy to establish when a node should transmit/receive and when
it should schedule its neighbours, respectively. Specifically, WIHAUL first consid-
ers all conflict nodes as eligible candidates for acting as scheduling coordinators (in
our example nodes 4 and 3). Among these, the one with the lowest hop distance
H. = ming;5.—1y H; is designated as the root coordinator and placed at the top of the
scheduling hierarchy, namely at Level 0. In this example it is node 4 that acts as coor-
dinator, while 6 (the gateway) is not a conflict node. The remaining nodes with §; = 1
will be placed at a level that depends on the difference between their H; value and that
of the main coordinator (H,) i.e. Level i = |H; — H.|. Nodes with S; = 0 will be placed
at Level; below their neighbouring conflict node. As such, in our example nodes 5 and
6 reside at Level 1, while 1 and 2 at Level 2, as illustrated in Fig. 3.4.

At each level of the hierarchy, WIHAUL assigns airtime top—down, a node accept-
ing the time allocated by its parent and assigning SPs to its children. In the considered
example, the protocol first assigns SPs for 4 and then the nodes at Level 1, i.e. 3,
5 and 6. In turn, node 3 assigns SPs to 1 and 2, outside the interval when it is in-
volved in communication with 4. This allows for spatial reuse, as links /45 and /3 1,

and respectively /g 4 and /3 > will be active simultaneously.
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Algorithm 2 Max-min Fair Scheduling

1: Obtain air time shares #; ;,Vk, i, j with Algorithm 1
2: H = BUILD SCHEDULING HIERARCHY (network topology)
3: Root coordinator of # assigns slots to its child nodes, i.e. Level 1 nodes, given total
airtime available
: while !bottom level of # do

Order conflict nodes by A; in increasing order

Accept airtime assigned by parent node

4
5
6: for all conflict nodes do
7
8 for all child nodes of current parent do
9

if node’s priority lower than others in clique then

10: Mark time slots used by other nodes as taken
11: end if

12: Assign airtime to child nodes

13: end for

14: Move to the next level

15: end for

16: end while

17: function BUILD SCHEDULING HIERARCHY (topology)

18: L+ 0; > Level O
19: Set node with H. = ming;s,—1} H; as root coordinator

20: Place the root coordinator on £

21: while !(all nodes assigned a level) do

22: L+ L+1 > Advance level
23: Place on current level nodes i with |H; — H.| = L

24: end while
25: return Scheduling hierarchy #

26: end function
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Figure 3.4: Hierarchical scheduling structure corresponding to the topology in Fig. 1.1 (left) and

SPs allocated for each communicating pair transporting different flow segments (right). Links /4 5
and /3 1, and respectively /s 4 and /3 ; can be simultaneously active. SPs labelled in black represent

those being scheduled by node circled; those in grey SPs by the parent of current node.

In case of multi-path routing, it may happen that two or more nodes on the same
level share the same neighbouring node that they could schedule. In such cases, the
node with the smallest identifier A; takes priority and will be the one scheduling. In
turn, the child informs the other candidate parents of the assigned time, to resolve the
tie and avoid conflicts. This process is repeated until all computed SPs have been
disseminated to all stations.

Subsequently, nodes will periodically switch their beams towards the correspond-
ing neighbours for transmission/reception during the assigned times. To adapt to the
dynamics of physical channel conditions (e.g. link blockage) and the changing flow
demands, the controller will periodically (e.g. every beacon interval) collect link qual-
ity and flow demand information, run the progressive filling algorithm from scratch,
and re-schedule flow segments as appropriate. The system check for network update
during BIH as frequent as by the specific scenario (up-to one BI), and as we will show

in Section 3.4.4, changes will take effect within one BI.

3.4 Performance Evaluation

To evaluate the performance of WIHAUL, I implement this in NS-3 and conduct exten-
sive simulations under different scenarios,?
for mm-wave networks, including DLMAC (Sim et al., 2016a), MDMAC (Singh et al.,

2010), and variations of these. I examine achievable gains in terms of flow throughput

comparing with recent scheduling schemes

distribution and overall network throughput, and the level of fairness each approach

attains over realistic multi-hop topologies. I further analyse WIHAUL’s behaviour in

2The source code of the implementation is available at https://git.io/wihaul.
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terms of allocated flow throughputs and airtimes, and give insight into the impact of
link rates and flow demands on the partitioning of resources. Lastly, I evaluate the
solution with real data traffic traces and examine end-to-end delay performance.

It is worth noting that making a definite comparison of the complexity entailed
by my solution and the benchmarks considered is difficult. This is largely due to the
different paradigms employed, i.e. centralised vs distributed, and random vs scheduled
channel access. Unlike the proposed mechanism, the benchmarks are also subject to
convergence times that depend on neighbourhood size and payload lengths, and may
require restarting to cope with traffic dynamics. Slot alignment is also problematic
in distributed settings, yet not explicitly discussed by the respective authors. By the
proposed solution, the airtime allocation is a function of the highest flow rate and a
configurable step length, while scheduling runtime depends on the number of nodes in

a given topology.

3.4.1 Simulation Environment

While the proposed solution is applicable to any multi-hop mm-wave backhauls that
operate in a scheduled mode, for evaluation purposes we employ the 802.11ad PHY
with the SP based MAC, as this standard is already mature. To incorporate multi-hop
frame relaying, the controller logic, and the progressive filling algorithm in NS-3, I
extended the IEEE 802.11ad SP based MAC implementation of Facchi et al. (Facchi
etal., 2017). The simulator incorporates the 802.11ad MAC frame structure and simple
PHY functionality for directional multi-gigabit OFDM transmissions. The Beacon In-
terval (BI) header occupies a fixed fraction of the BI duration (100ms customisable), a
configurable fraction of the BI duration. This proposal uses the default IEEE 802.11ad
setting, i.e. 10% of the BI duration for overhead, which is also in agreement with
the LTE and 5G NR frame structures.? Overall, this overhead interval is reserved for
beamform training, control message exchange, and schedule dissemination. Specifi-
cally, should there be any changes in link capacity, routing, or flow demand, as will be
discussed in details in Sec. 3.4.4, the BI overhead will cover the time required to prop-
agate to backhaul nodes the flow rate allocations recomputed from scratch by the con-
troller. Actual packets are exchanged during the data transmission interval (DTI), as

scheduled by WIHAUL. I employ the Friis path loss model based on which the received

3LTE and subsequent 5G NR Type 2 frames for TDD access dedicate 10% of the frame duration for
Downlink Pilot Time Slot (DWPTS), Guard Period (GP), and Uplink Pilot Time Slot (UpPTS), to handle
TDD operation specifics (3GPP, 2018)
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power and the SNR is computed, and then I use the SNR to map to specific modulation
and coding scheme (MCS) which corresponds the link capacity, ¢; ;, V{i, j}.

I implement a central controller that executes the proposed WIHAUL, including the
progressive filling and scheduling algorithms, and incorporate measurement of MAC
queue length to monitor events such as buffer bloat. If changes in flow demand or
link capacity take place, the progressive filling and scheduling operations will be trig-
gered to perform resource allocations in the next BHI. Further, the simulation tool
incorporates MAC protocol data unit aggregation (A-MPDU) and MAC frame relay-
ing to support efficient multi-hop backhauling scenarios. Assume that during DTT the
TX/RX base stations are perfectly beam aligned as per the ’quasi-optical’ vision in
IEEE 802.11ad (IEEE 802.11ad Std., 2014). While PHY design remains outside the
scope of this work, I also investigate the impact of secondary interference, and explains
how WIHAUL tackles such interference in Sec. 3.4.5.

Given the switched operation of transmissions and receptions, and the high PHY
bit rates employed on links, to avoid excessive delays and buffer overflows at relaying
stations, WIHAUL divides the airtime allotted to each sub-flow into multiple SPs each
of shorter duration. In the simulation evaluation, I work with 20 short SPs that sum up
to the computed airtime allocations.

The NS-3 build-in module allows for full-stack simulation including application,
transport and internet layers on top of the 802.11ad MAC and PHY. I work with ap-
plications that generate fixed packets of 1470 Bytes, except when experimenting with

real traffic traces. The parameters used in simulation are summarised in Table 3.2.

3.4.2 Fairness Metrics

An allocation is max-min fair if increasing the rate of a flow is only possible by de-
creasing that of others (Bertsekas and Gallager, 1992). Note that max-min is a qual-
itative fairness criterion, and unlike e.g. Jain’s fairness index, this typically does not
have a directly measurable value. Therefore, to quantify fairness, I first resort to the
concept of inequality distribution used in economics, and compute Gini coefficients

(Gini, 1921), using the following formula:

Y X lre—rl
2nY 1 1k ’

where ry, is the rate allocated to flow k, and n is the total number of flows. The lower

G:

this coefficient is with a certain rate allocation vector, the more fair the distribution of

resources is.
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Parameter Value
TX power 10dBm
TX/RX antenna gain 20dBi
BI duration 102400us
BI overhead 10240us
Progressive filling step length (€) 10Kbps
UDP payload 1470B
TCP MSS 1460B
Time fraction allocated for TCP ACKs 0.06
TCP Initial Slow Start Threshold 64KB
TCP TX/RX Buffer Size 10MB

Table 3.2: Simulation settings.

To add further perspective and quantify to what extent the minimum flow rate in the
network might be higher with WIHAUL than with other schemes, this chapter employs

the generalised measure of fairness defined in (Lan et al., 2010), as follows

an 1=P7 5
Mﬁ(r)ZSIgH(l—B)-Lg,1 <ﬂ> ] :

where B dictates different types of fairness measures. For max-min fairness 3 — oo,
1
1

() |

. T 17[3 B
limg_..log | Y7, (&Tﬁ’l)

and Mg (r) becomes

Tk
=171

Mg(r) = lim sign(1 —B) [Z

B—ree k=1
=—e

Denote y; = (Y, r1)/rr and solve the limit above by applying I"Hopital’s rule, which
leads to limg_,.. (X}, yE_l log(yk))/(Xr_; yE_]). As B — oo, the numerator is dom-
inated by the highest y; term, i.e. maxg{yxlog(yx)}, hence the limit converges to
maxy Y ; r;/ry and max-min fairness can be measured with
Y }

Tk

Mg(r) = —m]?x{ (3.7)
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3.4.3 Comparison with State-of-the-Art Solutions

I compare the performance of WIHAUL against that of recent mm-wave scheduling
schemes, namely DLMAC (Sim et al., 2016a) and MDMAC (Singh et al., 2010), in
terms of mean and total network throughput, and inter-flow fairness. I conduct the
evaluation over several topologies generated with the Cerda-Alabern model that cap-
tures the characteristics of real-world multi-hop wireless deployments (Cerda-Alabern,
2012). The topologies considered comprise 10 to 15 stations (including the Internet
gateway) and the number of aggregate flows traversing the network varies between 7
and 10. Fig. 3.5 illustrates four of these topologies*, where the X and Y axes represent
the base stations’ coordinates, with base station O being the gateway. Link rates vary

between 2.772—6.756Gbps, depending on distance between stations.

I also compare against optimised DLMAC and MDMAC versions that seek to re-
duce gaps between transmissions (BinDLMAC) (Sim et al., 2016a) and operate with
slot sizes that maximise transmission efficiency respectively (OptMDMAC).? Note all
these are decentralised and do not explicitly consider fairness in their design. Each
approach transports backlogged aggregate flows (unlimited demand) transmitted over
UDP.

Let us examine first Figs. 3.5e-3.5h, where I show the average and 95% confidence
intervals of individual flow throughputs attained with WIHAUL, DLMAC, MDMAC,
and their variations, in each topology considered. These figures also plot the average
throughput performance over all flows as the last cluster of bars to the right of each
plot. Observe in these clusters that the bars corresponding to WIHAUL are indeed the
highest and the total network throughput ranges between 2.25-2.5Gbps in all cases.
Hence, WIHAUL achieves the highest average flow throughput (and therefore total
network throughput), irrespective of the number of hops flows traverse and with how
many competing flows they share links.

Flows that encounter less competition attain superior performance with the pro-
posed approach, without negatively impacting on the others. This can be observed
in Figs. 3.5e and 3.5f, where with WIHAUL flows fj and fi, and respectively fo—f3
achieve approximately 450Mbps and 100Mbps more throughput than the other flows

traversing the backhaul. At the same time, the proposed method reduce the gross per-

“Experiments conducted with more topologies show similar conclusions. Results obtain with four
of these are included for conciseness.

>The default MDMAC design works with a slotted channel where slot size is fixed to 20us. The
optimised version considered works with slots that can accommodate exactly one transmission burst.
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(a) Topology 1. (b) Topology 2.

0 lbO 2b0 0 1 bO 2b0 300
(c) Topology 3. (d) Topology 4.

Figure 3.5: Multi-hop topologies used for performance evaluation, generated with the Cerda-

Alabern model (Cerda-Alabern, 2012); x-y axis in metres.

formance dissimilarity between flows (e.g. up to 1Gbps between flows f] and f3 with
BinDLMAC in topology 1). In addition, the flows penalised by earlier approaches
attain up to 5x higher throughput with WIHAUL (observe flow f; in Fig. 3.5f with
WIHAUL and BinDLMAC). Hence, with WIHAUL, flows attain similar throughput as
long as they share the same cliques, while additional underutilised network resources
are equally divided among unconstrained flows.

Note in Figs. 3.5g—3.5h that with WIHAUL all flows achieve the same through-
put for topologies 3—4, unlike with DLMAC, MDMAC, and their variations, which
largely favour flows terminating closer to the gateway and penalise those with end-
points multiple hops away. (Opt)MDMAC is less prone to such behaviour, though
has the disadvantage of requiring appropriate configuration of the slot size, which is

impractical. Nonetheless, although the ‘optimised” MDMAC version performs rela-
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tively well overall, it still carries unfairness, as e.g. with this scheme flow f;7 in the

third topology attains nearly half the throughput provided by WIHAUL (Fig. 3.5g). |
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Figure 3.5: Throughput comparison of WIHAUL and existing schemes over the topologies shown

in Fig. 3.5. Simulation results.
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Figure 3.6: Gini coefficients corresponding to the throughput distribution attained by each scheme

in topologies in Fig. 3.5. Simulation results.

conclude that WIHAUL does not unnecessarily penalise flows that terminate/originate

further away from gateways.

To examine closer the fairness properties of all schemes, Fig. 3.6 plots the Gini
coefficients corresponding to the flow rate allocations each of these yields in the 4
topologies considered. Recall the Gini coefficient gives a numerical representation of
inequality, with a lower value corresponding to a fairer allocation. Observe that al-
though these values depend on the network topology, number of flows, and link rates,
WIHAUL outperforms the existing schemes, being in particular considerably more fair
than the DLMAC variants. Precisely, the Gini coefficients when the network operates

with BinDLMAC range between 0.2 and 0.5 and are the highest in all 4 topologies.
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Topoloasheme | DLMAC  BinDLMAC MDMAC OptMDMAC ~ WIHAUL
1 28912 -25.658  -12.186 -14.75 -10.289
2 31783 -33.605  -11.542  -13.848  -9.2215
3 -20.174  -18.116 97012 -10.826  -8.0635
4 -20.084  -28.705 -12.31 11517 93743

Table 3.3: M measure of max-min fairness as derived in (3.7) following Lan’s model (Lan et al.,

2010). Simulation results.

DLMAC performs marginally better, while (Opt)MDMAC yields Gini coefficients in
the 0.1-0.3 range. This proposal leads to the lowest Gini coefficients in all topologies
(0.004-0.2), being substantially less unfair than the others. These properties are fur-
ther confirmed by the results given in Table 3.3, which shows the fairness measure as
derived in (3.7) for the proposed approach and the benchmarks considered. Indeed Mg
is up to 5x higher with the proposed approach, which also indicates WIHAUL ensures

superior performance for the smallest flow, yet remains fair to the others.

I conclude that existing decentralised approaches bias against flows with longer
hop-distance and/or inferior link rates; in contrast, the proposed WIHAUL not only
achieves more fair partitioning of resources among all traffic flows, but also higher
throughput for the smallest flow and overall higher mean throughput performance.
This is because the decentralised approaches by design fail to take into account the
end-to-end flow rate provisioning, henceforth the flows’ throughputs are capped by the
lowest throughput of the links traversed. This will naturally lead to wastage of net-
work resources. In contrast, the proposed WIHAUL performs rate allocation based on
knowledge of the conditions on the links traversed by each flow, and takes into ac-
count how much the users actually demand in order to best utilise channel resources.
Although these comparisons are carried on UDP traffic, one should envision that TCP
will only make the contrast in terms of throughput performance sharper, as without
the end-to-end flow rate provisioning the decentralised approaches suffer from packet
drop at intermediate base stations, which will in turn trigger TCP congestion control to
slow down transmissions. All of these have important practical implication on cellu-
lar backhauls where WIHAUL could provide superior and more homogeneous service

guarantees to users.
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Figure 3.7: Lamppost small cell backhaul deployment in Nottingham city centre, operating on
mm-wave links. Geographic information extracted from open data set (Council, 2012); backhaul

carries 10 aggregate flows; cliques of interest circled; topology ‘partitioned’ into 3 regions.

3.4.4 Dynamic Conditions

Next I undertake an in-depth analysis of WIHAUL’s operation, investigating the impact
of network dynamics in terms of link quality, flow demand, and routing strategy, on
the airtime allocation and end-to-end performance. It is important to verify the perfor-
mance of the proposed protocol under the above mentioned dynamic conditions, which
occur often in mm-wave backhauls. For this I envision a lamppost based deployment
in the Old Market Square of Nottingham as shown in Fig. 3.7, which I obtain from a
publicly available data set (Council, 2012). This topology consists of 16 base stations
(STAs) that communicate over mm-wave links and we envision 10 aggregate flows
from the gateway (STAO). Also shown in the figure are three cliques of interest and,
for ease of explanation, I consider the deployment as ‘partitioned’ into three regions.
The results shown in what follows will demonstrate that max-min fair backhauling
requires a non-trivial partitioning of the available airtime resources, which depends
on the demand of each flow, the paths traversed, and the capacities of the links these

comprise.

3.4.4.1 Demand Variation

Let us first examine a scenario where the demand of a single flow (i.e. fg originating
at STAO and terminating at STA14) grows from 300Mbps to 1.5Gbps, while that of

the others remains fixed to 400Mbps. The goal here is to understand how this impacts
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Figure 3.8: Throughput performance and distribution of resources with WIHAUL in the topology
in Fig. 3.7 as the demand of f; increases from 300Mbps to 1.5Gbps, in 300Mbps steps every 3 Bls

(in plot/top labels), while the demand of others remains at 400Mbps. Simulation results.

on airtime allocations and verify that the rates of the smallest flows are unaffected.
Fig. 3.8 illustrates the results of this experiment, where I plot (a) the time evolution of
the individual throughputs and (b) the fraction of airtime allocated to fs on link /o 4, as
well as the total airtime allocated in Clique Cy, which constrains fg.

Observe that the throughput of fg increases with demand, up to 1Gbps, when
the clique constraint is activated (total airtime in Cy reaches 1) and the throughput
is capped despite further growth in demand. As intended, the throughput of the re-
maining flows stays at 400Mbps, which indicates their demand is satisfied throughout.
Note that the scheduling process is repeated every BI, link rate and demand updates are
collected during BHIs, and takes one BI duration for the demand increase to propagate
through the network.

To better understand the reasons behind these flow throughputs, we examine in
Fig. 3.8b the airtime utilisation in the bottleneck clique Cyp and the time allocated to
the demand-varying flow, 7 o 4. Observe that initially there exist sufficient resources to
accommodate the entire demand of flow fg; this holds for a demand up to 900Mbps,
when 76 ¢ 4 1s tripled. Further increasing this demand does not result in a throughput
increase above 1Gbps. This is because the proposed solution protects the remaining

flows, which complies with the max-min fair allocation paradigm proposed.

3.4.4.2 Shared Link Degradation

Next let us examine the impact of link quality variation on the performance of all

flows traversing such a link, when max-min fair allocation is performed. To this end, I
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Figure 3.9: Flow throughputs and airtime fractions allocated to flow segments traversing /j 3 in
both cliques, as /) 3 degrades. Flow demands remain at 400Mbps. MCS used with different link

conditions labelled on white/shaded areas or show as top x-ticks. Simulation results.

simulate different degrees of link blockage between STA3 and STAO (i.e. [y 3), which
results in signal attenuation between 5dB and 20dB. As a result, the MCS employed
is reduced from 4.9Gbps to 598Mbps, to preserve link reliability. In this scenario,

assume the bit rates of the other links remains constant and the demand of all flows is
400Mbps.

Fig. 3.9 illustrates the results of this experiment, where I measure (a) the individual
flow throughputs and (b) the total time utilisation in cliques Cyp and Cs, as well as
the sum of airtime fractions allocated to all flow segments traversing [y 3, from the
perspective of these cliques. Note that the airtime allocation on [y 3 is effectively fixed
under each link quality condition, but it may well represent different fractions from
cliques’ perspectives. When the link quality is high (i.e. cg3 = 4.982Gbps), the total
airtime consumption in Cy and C3 is below 1, hence all flows are satisfied. This is
indeed confirmed by the flow throughputs shown in Fig. 3.9a. Subsequently, when
a 5 dB attenuation is introduced at the third BI, the throughputs of flows fo—f4 drop
slightly, while those of f5—fo remain satisfied. That is because Cy still has sufficient
resources (airtime consumed sums to 0.96), while the C3 clique constraint becomes
active (airtime reaches 1). This can be observed indeed in Fig. 3.9b, where we also see
that the total airtime allocated on link [ 3 increases from 0.4 to 0.5 in both cliques, as

a result of signal degradation.

Further attenuation on link /o 3 (yielding 2.776Gbps bit rate), leads to the activation
of the Cy constraint (observe in Fig. 3.9b that the total airtime in clique Cy reaches 1),

and consequently to a decrease in the throughput of all flows. However, as C3 becomes
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results.

constrained before Cy, flows fo—f4 attain slightly lower (approx. 30Mbps) throughput
than fs—f9. Lastly, this performance gap shrinks as link [y 3 degrades further (BI 9
onward) and additional degradation would completely close the gap to meet the max-
min fairness criterion. Meanwhile, the total time consumed by link /[y 3 to transport
all flows is increasing to as much as 0.9 at the end of the simulation (see BI 12 in
Fig. 3.9b).

I conclude that degradation of an intensively shared link (and clique) has a sig-
nificant impact on the throughput performance of the entire network. Nevertheless,

WIHAUL guarantees max-min fair allocation of the flow rates.

3.4.4.3 Heterogeneous Demands and Cascaded Cliques

Following we consider more complex circumstances where the demands of flows in
regions 1-3 as shown in Fig. 3.7 are 500, 400, and 600Mbps respectively, while the
quality of link /5 g varies. Signal attenuation decreases and capacity grows from 598 to
4,982Mbps on this link after every third BI. As I5 g only carries flow f>, we investigate
in Fig. 3.10b the changes in time allocation within all the cliques that f, traverses,
ie. Cs, C3, and Cp, and show the time evolution of individual flow throughputs in
Fig. 3.10a.

Note that as c5 g increases, more airtime is made available for both fi and f5, as

they share the same clique Cs. In effect, the constraint of this clique is removed (total
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airtime consumption drops from 1 to 0.5) and this also impacts on the flows with which
f1 and f; share cliques C3 and Cy, i.e. fo, f3 and fs. Precisely, the throughput of these
drops to 415Mbps after the third BI. As the quality of /5 g further increases, the total
airtime allocated to f> on this link, i.e. segment s 53, decreases, though the flows
in region 1 are together constraint by C3. This confirms the proposed max-min fair
allocation strategy ensures f> is not allocated more resources in cliques C3 and Cy,
as this would come at the cost of a decrease in fy, f3 and f4’s throughput. Lastly,
observe that the throughput of the other flows remains unaffected, as the demand of
/5, f6,and f7 is the smallest among all (i.e. 400Mbps) and changes in c¢5 g do not affect
clique Cy, which is shared by all flows.

3.4.4.4 Dynamic Routing

Routing changes can happen in backhaul networks due to link blockage, buffer over-
flows, or other routing decisions made by a routing algorithm running at the network-
ing layer. Next, we investigate the impact of route changes on the airtime allocation
and end-to-end throughput performance, when the backhaul is managed with the pro-
posed WIHAUL solution. To this end, we consider a situation where part of the traffic
traversing links /o 4 and /p 1 in the topology depicted in Fig. 3.7, i.e. flows fg, f7, and
fo are rerouted to STA2 and STA11 (i.e. no longer traverse STA1 and STA4), while the
routes followed by f5 and fg remain unchanged. After 6 beacon intervals, the initial
routing topology is restored. We illustrate these changes in Fig. 3.11.

Fig. 3.12a illustrates the end-to-end throughput dynamics for all flows, as a result
of these route changes, and in Fig. 3.12b the corresponding time allocation on links
lo.4, lo11, lo,1, and lp ». Observed that WIHAUL reacts fast by re-allocating the airtime
resources and the network throughput is only marginally affected. Flows f9 and f;
experience a 35Mbps drop at BI 4 due to the fact that packets buffered at STA4 and
STA1 are partially dropped when the routes change, but the throughput recovers in the
following BI. These results also confirm that WIHAUL will not unnecessarily penalise
flows traversing more hops. In particular, when the routes change and the number
of hops traversed by flows fg, f7, and f9 decreases, after recomputing rates with the
max-min criterion, their throughput is actually reduced, due to the fact that the clique
co consists of link segments, I 11 and /y» that observe lower capacity as compared to
links on the original paths, i.e. lp 4 and [y ;.

As expected, the time allocated on links /o 4 and [y 1 is reduced by approximately

2/3 and 1/2 when the routes of fg, f7 and fo change. Meanwhile, the time fractions
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allocated to [y 11 and [y increase from O to 0.19 and 0.14, which are both more than the
amount reduced in lp 4 and [y 1. This is because the capacity of the new links employed

by the new routes are lower than those on the initial routes.

3.4.5 Secondary Interference

In this subsection, we examine the potential impact of secondary interference, show-
ing how WIHAUL can overcome this by constructing cliques that capture such circum-
stances and avoiding their simultaneous activation during scheduling. We also discuss
the complexity cost incurred when accounting for such secondary interference.

We simulate again the topology shown in Fig. 3.5b, where some links may inter-

fere with each other when their TX-RX beam pairs are aligned. Specifically, when
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Figure 3.13: The existence of secondary interference can degrade the throughput of flows travers-
ing interfering links (i.e. Flows 2, 5, and 7). Taking into account the potential secondary interfer-

ence, WIHAUL’s mitigates this effect.

STA7 is receiving from STAO and STAS is transmitting to STA14, STA7 experiences
secondary interference as the power of the signal it receives from STAS has a level of
—62.7 dBm. STAS can suffer the same if receiving from STA14 and STA7’s transmis-
sion to STAO happens at the same time. Moreover, STA13’s transmission to STA10
will interfere with STA14, if this is beam-switched to STA12 for reception, and vise
versa. Fig. 3.13 illustrates the individual flow throughput averaged over 20 BIs when
1) secondary interference exists but the scheduling ignores this 2) secondary interfer-
ence exists and WIHAUL incorporates this information when performing scheduling,
and 3) the system is free of secondary interference. Observe that flows traversing the
interfering links, i.e. f2, f5, and f7, experience S0Mbps, 150Mbps, and respectively
70Mbps throughput degradation when schedules are assigned without accounting for
such interference. When WIHAUL employs this knowledge for transmission coordina-
tion, the cliques are constructed such that none of the potentially interfering links are
active simultaneously, regardless of whether this is due to secondary interference. As a
result, the flow throughputs obtained when secondary interference is accounted for are
virtually the same as those achieved in the idealistic case of the topology being free of

secondary interference (given perfect beam shapes and pseudo-wired communication).

Given that secondary interference is in most cases marginal, and only 10% of the

links in the simulated topologies shown in Fig. 3.5 experience secondary interference,
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it is worth understanding the computational cost of scheduling with secondary inter-
ference in mind. Each group of interfering links forms a clique and a link with lower
priority in the scheduling hierarchy (see Sec. 3.3.2) will have to store the time slots
used by the links with higher priority in the hierarchy, which introduces n, iter-
ations. Hence, accounting for secondary interference will increase the computation
complexity of WIHAUL proportionally with the number of links that may interfere

with each other if active simultaneously.

3.4.6 Real-Time Traffic

I complete the evaluation of WIHAUL by conducting experiments with real-time traffic
potentially subject to latency constraints. We are particularly interested in the delay
packets experience while traversing multi-hop mm-wave backhauls, where cascaded
queues could have a negative impact on user experience. To this end, we emulate
dynamic adaptive streaming over HTTP (DASH) by extracting meta-data from mobile
traffic traces collected in New York City (Fund et al., 2014). We replay 100 such video
sessions in parallel towards different base stations (download) in the topology shown in
Fig. 3.7. The distribution of the session bit rates is shown in Fig. 3.14, where observe
that individual bit rates vary between 100 Kbps and 3.4Mbps.

Under these circumstances, we measure the packet round-trip-time (RTT) for each
aggregate flow over 30 seconds, as well as the average throughputs. We plot the RTT
experienced by TCP segments in Fig. 3.15a, where observe this is below 30ms, with
median values for all aggregates falling between 8 and 15ms. This complies with the

NGMN Alliance specifications for end-to-end delay (20ms) in small cell backhauls
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Figure 3.14: Distribution of DASH flow bit rates measured in New York City as reported in (Fund
et al., 2014) and used here for the evaluation of WIHAUL.
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Figure 3.15: CDF of packet RTTs for the aggregate flows (each consisting of 100 HTTP sessions
following the bit rate distribution in Fig. 3.14) in the Nottingham topology shown in Fig. 3.7, and

their average throughputs. Simulation results.

(Alliance, 2012). As expected, RTTs are proportional to the number of hops traversed,
however, their distribution also depends on how frequently they are served. Precisely,
note that the slope of the CDFs decreases with the number of aggregates traversing the
first hop from the gateway and thus the latency in different regions is only scaled up
by the number of hops each aggregate traverses. For instance, flows fi, f2, and f are
3 hops away from the gateway (STAO) and share [y 3 with fy. As such, the RTTs they
experience are identical (overlapping curves). Flow fy also traverse 3 hops, but only
shares Ip; with fg, hence their RTT distributions start at ~5ms, but quickly diverge
(medians 11 and respectively 15ms).

Turning attention to aggregate flow throughputs, we show the average and 95%
confidence intervals of this metric in Fig. 3.15b. We see that overall performance
is homogeneous (despite flows traversing different number of hops and experiencing
different link rates), fluctuating around 100Mbps for each aggregate. Note that in this

scenario all flows are satisfied and cliques are not constrained.

3.4.7 Runtime Performance

Lastly, we examine the runtime convergence of WIHAUL’s progressive filling routine,
to understand the practical feasibility of executing this algorithm periodically in order
to perform airtime allocation. To this end, we take again the Nottingham topology
depicted in Fig. 3.7, as this has a reasonably large number of nodes (i.e. 14) and aggre-
gate flows traversing it (i.e. 9), which directly impact on the complexity. We measure

the total time required by an off-the-shelf workstation, equipped with an Intel Core
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Figure 3.16: Progressive filling runtime performance as flow demands increase, in the topology

shown in Fig. 3.7. Simulation results.

15-4570 CPU clocked at 3.20GHz, to complete the execution of the progressive filling.
For these measurements, we consider all flows have equal demands that range between
100Mbps and 2Gbps, with S0Mbps increments. For each case, we set the step length
of the progressive filling algorithm to 10Mbps, execute this 100 times, and compute

the mean runtime with 95% confidence intervals.

Observe that the proposed solution converges within a number of steps that, as long
as clique constraints are not met (which will eventually happen, given limited channel
capacities), strictly depends on the demand and the step size. For this topology, the run-
time will not increase beyond approximately 11ms as the demand exceeds 650Mbps.
We argue that this cost is negligible if the algorithm is run e.g. every second, while the
granularity can be increased if the airtime allocation routine is fed with the output of a
traffic forecasting mechanism (Zhang and Patras, 2018), and executed in anticipation
of the expected traffic. Moreover, the step size used by the progressive filling algorithm
will also have an impact on the runtime performance, i.e. the longer the step size, the

faster the algorithm convergence, subject to potential reduction on accuracy.
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3.5 Discussion

While this chapter of thesis addresses max-min fair rate and airtime allocation for ag-
gregated flows traversing backhauls with a general focus on data traffic, ongoing 5G
research efforts are increasingly concerned with accommodating diverse types of ap-
plication scenarios. In order to address the different needs of various applications in
shared network infrastructures, the ‘network slicing” paradigm has emerged, thanks to
advances in network programmability. Therefore, the next chapter changes the focus
of my research towards optimal resource in backhauls that accommodate services with
potentially conflicting requirements, including rate-intensive, delay-sensitive, best-
effort, and revenue-driven.

As a possible future extension of this Chapter, the proposed max-min fair resource
allocation scheme could be prototyped on commercial hardware, given that several
platforms are emerging (TP-LINK, 2017; Mikrotik, 2017). The centralised control
protocol is associated with certain communication overhead, while the decentralised
benchmark solutions do not explicitly address fairness. It would therefore be inter-
esting to investigate potential decentralised algorithms to achieve max-min fairness in
mm-wave backhaul settings.

Although I provide a rate allocation and scheduling approach with focus on max-
min fairness and achieving scheduled access, so that each base station knows when
to transmit to whom, one could argue that certain schedules might be better than oth-
ers. A possible extension is to devise a quantitative measure of different schedules’
performance, by taking into account e.g. beam switching angles (which may also be

associated with energy and/or airtime consumption).

3.6 Summary

By supporting multi-Gbps link rates, mm-wave technology is becoming a promising
enabler of wireless backhauling solutions in ultra-dense cellular deployments. Highly
directional beam-forming is mandatory to combat severe signal attenuation specific
to these frequencies, though gives rise to cumbersome terminal deafness issue that
must be tackled to fully exploit vast bandwidth resources. This chapter built upon
the scheduled access paradigm as per IEEE 802.11ad (IEEE 802.11ad Std., 2014),
802.11ay (Cerwall (ed), 2017), and 3GPP 5G NR (3GPP, 2018) and proposed W1-

HAUL, a network-wide airtime resource allocation and scheduling mechanism, which
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explicitly guarantees inter-flow max-min fairness in mm-wave backhauls. The solu-
tion was validated over a broad range of network conditions and demonstrated via
extensive simulations that WIHAUL achieves up to 5x higher measurable fairness as
compared to existing mm-wave MAC proposals, improving up to fivefold the through-
put of otherwise limited flows, while attaining superior overall network throughput.
Further, I demonstrated that the progressive filling routine devised for airtime alloca-
tion completes within milliseconds and its complexity strictly depends on the highest
flow demand. Lastly, the proposed approach is able to meet the typical delay constrains

of real-time applications.



Chapter 4

Utility Framework and Optimisation in

Mm-wave Backhauls

Advances in network programmability enable operators to ‘slice’ the physical infras-
tructure into independent logical networks. By this approach, each network slice aims
to accommodate the demands of increasingly diverse services, which is particularly
important for 5G use cases. However, precise allocation of resources to slices across
future 5G millimetre-wave backhaul networks, in order to optimise the total network
utility, is challenging. This is because the performance of different services often de-
pends on conflicting requirements, including bandwidth, sensitivity to delay, or the
monetary value of the traffic incurred. While the previous chapter tackled max-min
fairness among aggregated flows of all data types, resource allocation must become in-
creasingly aware of application-specific demands. Towards this end, this chapter will
present a general rate utility framework for slicing mm-wave backhaul links, encom-
passing all known types of service utilities, i.e. logarithmic, sigmoid, polynomial, and
linear. Inter-flow fairness is thus regarded as utility fairness, where the notion of utility

quantifies value of rate allocations as perceived by the applications and MIP.

A deep learning solution, namely DELMU (Li et al., 2018), will be proposed to
tackle the complexity of optimising non-convex objective functions built upon arbi-
trary combinations of such utilities. Specifically, by employing a stack of convolu-
tional blocks, DELMU can learn correlations between traffic demands and achievable
optimal rate assignments. The inferences made by the neural network will be further
regulated by a simple ‘sanity check’ routine, which guarantees both flow rate admissi-
bility within the network’s capacity region and minimum service levels. The proposed

method can be trained within minutes, following which it computes rate allocations

61
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that match those obtained with state-of-the-art global optimisation algorithms, yet or-
ders of magnitude faster. This confirms the applicability of DELMU to highly dynamic
traffic regimes and demonstrates up to 62% network utility gains over a baseline greedy

approach.

4.1 System Model

Consider a backhaul network deployment with B STAs inter-connected via mm-wave
links.! Each STA is equipped with a pair of transceivers, hence is able to transmit
and receive simultaneously, while keeping the footprint small to suit dense deploy-
ment. STAs employ MIMO antenna arrays and attain a total capacity as formulated in
Sec. 3.1. To meet carrier-grade requirements and ensure precise TX/RX beam coor-
dination, the network operates with a time division multiple access (TDMA) scheme.
Assume carefully planned deployments where STAs have a certain elevation, e.g. on

lampposts, hence interference is minimal and blockage events occur rarely.

I focus on settings where the backhaul network is managed by a single MIP and
is partitioned into / logical slices to decouple different services (e.g. as specified
in (3GPP, 2017b)). F user flows traverse the network and are grouped by traffic type i
corresponding to a specific slice, i.e. F = Uiy, 1y Fi- fij denotes a flow on slice
i that traverses path P;. We consider an application specific flow demand d; ;, and a
minimum service rate of §; ;, where the assigned flow rate ry ; to f; ; should satisfy
i j < rij <d; ;. Same as proposed in Chapter 3, the incentives to employ 9, ; is to
guarantee the availability of the service and allocating rate no more than requested, i.e.
d; j, 1s to avoid wastage on network resources. The MIP’s goal is to adjust the flow
rates according to corresponding demands, in order to maximise the overall utility of
the backhaul network. Flow demands are defined by upper and lower bounds. Lower
bounds guarantee minimum flow rates, so as to ensure service availability, whilst up-
per bounds eliminate network resources wastage. I assume a controller (e.g. ‘network
slice broker’ (Samdanis et al., 2016)) has complete network knowledge, periodically
collects measurements of flow demands from STAs, solves NUM instances, and dis-

tributes the flow rate configurations corresponding to the solutions obtained.

! Although this chapter primarily focus on mm-wave backhauls, due to their potential to support
high-speed and low latency communications, the optimisation framework and deep learning solution
this chapter presents are generally applicable to other technology.
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4.2 Problem Formulation

The objective is to find the optimal end-to-end flow rates that maximise the utility
of sliced multi-service mm-wave backhaul networks. This chapter first introduces a
general network utility framework, based on which I formulate the NUM problem,

showing that in general settings this is NP-hard.

4.2.1 Utility Framework

Recall that network utility refers to the value obtained from exploiting the network,
which can be monetary, resource utilisation, or level of user satisfaction. For any flow
f, consider four possible types of utility functions of flow rate r, depending on which
slice 7; that flow belongs to. The utilities considered are parameterised by o; and [3;,
whose values have practical implications, such as the amount billed by the MIP for a
service. Given an allocated rate r, I distinguish the following types of services that can

be mapped onto slices, whose utilities I incorporate in the proposed framework:

1. Services for which the MIP aims to maximise solely the attainable revenue.
Denoting #; the set of flows in this class, their utility is formulated as a linear
function (Ahuja et al., 1993):

Ulnr(r) = oc1r+[31, Ve F. “4.1)
We note that Uy, (r) is both concave and convex.
2. Flows f € %, generated by applications that require certain level of quality of

service, e.g. video streaming, and whose corresponding utility is thus formulated

as a sigmoid function (Yin et al., 2015):

1

Viel) = 1 o gy

Vfe h. 4.2)

Observe that Us;g(r) is convex in [0,B;) and concave in (5, ), therefore non-

concave over the entire domain.

3. Delay sensitive flows, f € 73, whose utility is modelled as a polynomial func-
tion (Fazel and Chiang, 2005):

Upy(r) = 03(r),  Vf € 7, (4.3)

where [33 is in the range (0, 1], for which the above expression is concave.
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4. Best-effort traffic, f € ¥4, that does not belong in any of the previous classes,
and whose utility is commonly expressed through a logarithmic function (Kelly,
1997):

Ulog(r) = log(our+B4), Vf € Fa. (4.4)
It is easy to verify that Ujog(7) is also concave.

The proposed general utility framework encompasses all the four types of traffic
discussed above (which may be parametrised differently for distinct tenants), therefore

the overall utility of the sliced backhaul network can be expressed as

Uu.= Z U(’”): Z Ulnr(r1)+ Z USig(r2>

fex fieh HeR
+ Y Upy(r3)+ Y. Ulog(ra). (4.5)
DEISVE fa€F

Arbitrary combinations of both concave and non-concave utility functions may result
in non-concave expressions U, as exemplified in Fig. 4.1. This figure shows the total
utility when combining 4 flows with different utility functions, two of them sigmoidal
and two polynomial, each with different parameters. Let us assume the rates of each
type of flow increase in tandem. Observe that even in a simple setting like this one, the
network utility is highly non-concave and finding the optimal allocation that maximises
it is non-trivial. I will next formalise this problem with practical mm-wave capacity

constraints, following which I will discuss its complexity.

4.2.2 Network Utility Maximisation

Consider a set of flows that follow predefined paths, P;,j € {1,2,...,J}, to/from the
local gateway, where the number of possible routes in the network is J. f; ; denotes
a flow on slice i that traverses path P;, which is allocated a rate r; ;. By contract, r; ;
shall satisfy §; ; < r; ; < d; j, where §; ; is the minimum rate that guarantees service
availability, and d; ; is the upper bound beyond which the service quality cannot be
improved. d; ; is no less than §; ; by default. Furthermore, each path P; consists of
a number of mm-wave links, and the link between STAs m and n is subject to a link
capacity c¢mp. Luse 75, € {0,1},5 € {Tx,Rx}, to indicate whether node m transmits
or receives data of flows traversing path P;. The total network utility in (4.5) can be

rewritten as:
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Figure 4.1: Total utility when combining four flows with different utility functions; namely, two

1 l _ 1 .
5o 008(—13) and Usig(r) = 1yo-008¢—a0)> 1N the ranges

of [10 — 30] Mbps and respectively [35 — 50] Mbps; the other two flows have polynomial utility

functions, i.e. Upiy(r) = 0.04(r*) between [0— 10] Mbps, and Uy, (r) = 0.03(r%¢) in [30 — 50] Mbps.

have sigmoid utility of rate r, i.e. Usig(r) =

Rates increased in tandem for each type of flow.

I J

Z U(r)= Z Z Ui(rij)- (4.6)

feF i=0 j=0

Finding the flow rate allocation vector r; j, Vi, j, that maximises this utility requires

to periodically solve the following optimisation problem:

1 J
max ) )" Ui(ri ;) 4.7)
i=0 j=0
S.t. 8,’7]' <ri; < d,-7j,Vi,j; (4.8)
d z S rl7]
Y ) Tiw = < 1{mn}€Pjse{TxRx}. (4.9)

i=0j=0 = Cmn

In the formulation above, (4.7) is the overall objective function and (4.8) specifies the
demand constraints. Each STA can transmit and receive to/from one and only one STA
simultaneously, and the total time allocated at a single node for all flow TX/RX should
not exceed 1, which is captured by (4.9). Here r; ; /cm,n denotes the time fraction

allocated to flow f; ; on link [, .
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4.2.3 Complexity

In what follows I briefly show that the network utility optimisation problem formulated
above, where the objective function is a linear combination of linear, sigmoid, poly-
nomial, and logarithmic functions, is NP-hard. By Udell and Boyd (Udell and Boyd,
2013) any continuous function can be approximated arbitrarily well by a suitably large
linear combination of sigmoidal functions (Udell and Boyd, 2013). Thus Y U(r) can
be regarded as a sum of sigmoids and a larger number of other sigmoidal functions.

Following the approach in (Udell and Boyd, 2013), one can reduce an integer program

findr
s.t. Ar < Z; re{0,1}",

to an instance of a sigmoidal program

maxZg(ri) = Z”i(’”i —1)

StAr<z,0<rp <I.

Here g(r;) enforces a penalty on non-integral solutions, i.e. the solution to the sig-
moidal program is O if and only if there exists an integral solution to Ar = Z. Since
the integer program above is known to be NP-hard (Papadimitriou and Steiglitz, 1998),
the reduced sigmoid program is also NP-hard, and therefore the NUM problem cast in
(4.7)-(4.9) is also NP-hard.

4.3 The Deep Learning Approach

To tackle the complexity of the optimisation problem formulated in the previous sec-
tion and compute solutions in a timely manner, I propose DELMU, a deep learning
approach specifically designed for sliced mm-wave backhauls and also applicable to
other technologies. In essence, this proposal learns correlations between traffic de-
mands and allocated flow rates, to make inferences about optimal rate assignments.
The results show that, with sufficient training data, the proposed deep neural network
finds solutions close to those obtained by global search, while requiring substantially

less runtime.



4.3. The Deep Learning Approach 67
4.3.1 Convolutional Neural Network

I propose to use a Convolutional Neural Network (CNN) to imitate the behaviour of
the optimal rate assignments. I employ a metaheuristic method named global search
(GS), the optimality of which is proven in (Ugray et al., 2007), to produce ground-truth
data to be used for training and testing of the proposed deep neural network. The GS
method works by starting from multiple points within the feasible space and searching
for local optima in their vicinity, then concluding on the global optimum from the set of
local optima obtained (Ugray et al., 2007). Specifically, the GS algorithm generates a
number of starting points using the scatter search algorithm (Glover, 1998), then elim-
inates those starting points that are not promising, judging by the corresponding value
of the objective function and constraints. It then repeatedly executes a constrained
nonlinear optimisation solver, i.e. fmincon by MATLAB®, to search for local max-
ima around the remaining start points. Eventually the largest of all local maxima is
taken as the global maximum, if one exists. Note that simpler approximations such
as semidefinite programming are constrained to convex optimisation problems, thus

inappropriate for this task.

The CNN is trained by minimising the difference between ground-truth flow rates
allocations (obtained with global search) and those inferred by the neural network. In
general CNNs preform weight sharing across different feature channels (Goodfellow
et al., 2016). This significantly reduces the number of model parameters as compared
to traditional neural networks, while preserving remarkable performance. At the same
time, the proposed approach aims to work well with a limited amount of training data,
which makes CNNs particularly suitable for this problem. Therefore, I design a 12-
layer CNN to infer the optimal flow rate and illustrate its structure in Fig. 4.2. The
choice is motivated by recent results that confirm neural network architectures with 10
hidden layers, like the one employed in this work, can be trained relatively fast and
perform excellent hierarchical feature extraction (Srivastava et al., 2015). Alternative
neural network architectures including multi-layer perceptron (MLP) and CNN with
various number of layers were considered. After empirically comparing the perfor-
mance of these different network architectures, I found that the particular structure
chosen achieves a good balance between inference accuracy and computation com-
plexity.

The minimum and maximum traffic demand, and topology information are con-

catenated into a single vector, which will be subsequently fed to a sequence of con-
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Figure 4.2: Proposed Convolutional Neural Network with 10 hidden layers, which takes traffic

demand and topology index as input, and infers the optimal flow rate allocations.

volutional blocks. Each block consists of a one-dimensional convolutional layer and
a Scaled Exponential Linear Unit (SELU) (Klambauer et al., 2017), which takes the

following form:

X x>0
SELU(x) = ® (4.10)

ne*—m x<0.
Here ® = 1.0507 and n} = 1.6733 by default. Employing SELU functions aims at im-
proving the model representability, while enabling self-normalisation without requir-
ing external techniques (e.g. batch normalisation). This enhances the robustness of the
model and eventually yields faster convergence. Features of traffic demands are hierar-
chically extracted by convolutional blocks, and they are sent to fully-connected layers
for inference. I train the CNN using a stochastic gradient descent (SGD) based method

named Adam (Kingma and Ba, 2015), by minimising the following mean square error:

be= Q><I><JZZZ Faij = Tqi ) (4.11)

g=0i=0 j=0

O denotes the number of training data points, r,; ; denotes the allocated rate allocated
to flow j on slice i, with demand instance ¢, as suggested by global search. rq ij1s
the corresponding rate inferred by the neural network. The CNN is trained with 500

epochs, with an initial learning rate of 0.0001.

4.3.2 Post-Processing Algorithm

The output of the CNN on its own occasionally violates the constraints (4.8) and (4.9),
because the model is only fed with traffic demands without embedding of constraints.
I address this issue by designing a post-processing algorithm that adjusts the CNN so-

lutions to fall within feasible domains, while maintaining minimum utility degradation



4.3. The Deep Learning Approach 69

and very short computation times. The idea is to first decrease recursively with a large
step-length the rate of flows that breach the constraints, then increase repeatedly with

a smaller step-length the rate of flows that can achieve the largest utility gains.

Algorithm 3 CNN Post-Processing Algorithm

1: Compute the time between each pair of nodes 7, ,

2: Compute the utility of each flow u; ; = U;(r; ;)
3: while Any 7, , > 1 do

4: Find the link /,, , with the maximum 7, ,

5: deStepLen = min{10,r; ; —&; j}

6: for Flows satisfying T;-,m ==1lor r‘}’n == 1 for /,,, do

7: Potential utility decrease u; ; = U;(r; j — deStepLen)

8: end for

9: Find the f; ; with the minimum non-zero Au; ; = u; j — u; j

10: Decrease rate of f; ;, i.e. r; j = r; j — deStepLen

11: Update 7, , and u;

12: end while

13: while Any flow rate can be increased do

14: inStepLen = min{1,d; j —r; ;}

15:  Potential utility increase u; ; = Uj(r; ; +inStepLen), Vf; ;
16: Find the f; ; with the maximum Aw; ; = u;/; —
17: Increase rate of f; j,i.e. r; ; = r; j +inStepLen

Wi j

18: Update 7,,, , and u; ;
19: end while

Algorithm 3 shows the pseudo-code of this procedure. The routine starts by com-
puting the total time on each link for all traversing flows, i.e. 7, , =},;}; t?mrﬁ i/Cmn
(line 1) and the utility of each individual flow based on the rate allocation returned
by CNN (line 2). Then it searches recursively for a flow to decrease (lines 3—12). At
each step, Algorithm 3 selects the link with the highest total time (line 4) and reduces
the rate of the flow traversing the link with minimum possible utility loss (lines 5—
10). Then the total link time and the flow utilities are updated (line 11). The process
(lines 4—11) is repeated until the time for all links comply with the time constraints.
Next, I increase iteratively a flow that yields the maximum potential utility gain, while
ensuring that all constraints are satisfied (lines 13—19). This is done by tentatively in-
creasing each flow, with a step-length that complies with the demand constraint (line

14), computing the corresponding utility increment (line 15), then finding the flow with
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Figure 4.3: The four network topologies used for evaluation. Circles represent the STAs, flow

2772 Mbps Path 3

paths are shown with lines of different colour, and link capacities are labelled.

maximum possible utility increase (line 16), and confirming the rate increment for that
flow (line 17). Before the next round of increasing the rates, Algorithm 3 recomputes
the total time on all links to verify that further rate increases are possible, and updates

the utility of each flow (line 18).

4.4 Performance Evaluation

I evaluate the proposed DELMU solution, which encompasses the CNN structure and
the post processing algorithm, on different backhaul topologies under a range of con-
ditions. Specifically, I use four different topologies as illustrated in Fig. 4.3, where the
number of STAs varies from 4 to 10, and link rates range from 693 Mbps to 6.8 Gbps.
Each path carries up to four types of flows, i.e. with individual sigmoid, linear, poly-
nomial, and logarithmic utilities. For each topology, 10,000 combinations of flow de-
mands in the range [0 — 750] Mbps in increments of 50 Mbps are randomly generated.
The corresponding minimum service rates are generated uniformly at random in the
range [0 — 100] Mbps as integer values, and are capped by the maximum flow demand.
The parameters shown in Table 4.1 are used to model utility.

To train and subsequently test the neural network, I run the GS algorithm on each

of the 10,000 network settings described above. 80% of the results obtained are used to
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Utility Type | Linear | Sigmoid | Polynomial | Logarithmic

o 0.00133 | 0.08000 | 0.03651 0.00229
Bi 0 350 0.5 1

Table 4.1: o, and J3; parameters for the utility functions used in the evaluation.

construct a synthetic dataset that is used in the training process, which effectively seeks
to minimise the mean square error expression defined in (4.11), by means of SGD. [ use
the remaining 20% of cases for as ground truth for testing the accuracy of the optimal
rate allocation inferences that DELMU makes. More precisely, the performance of
DELMU in terms of total network utility and computational time is compared against
the solutions obtained with GS and those computed with a baseline greedy approach
that is devised in this thesis. In this chapter, I will discuss both benchmarks in more
detail in the following subsection.

To compute solutions with the GS and greedy algorithms, and make inferences
with the proposed CNN, I use a workstation with an Intel Xeon E3-1271 CPU @
3.60GHz and 16GB of RAM. The CNN is trained on a NVIDIA TITAN X GPU
using the open-source Python libraries TensorFlow (Abadi et al., 2016) and Tensor-
Layer (Dong et al., 2017). I implement the greedy solution in Python and employ the
GS solver of MATLAB®,

4.4.1 Benchmark Solution

I engineer a baseline greedy algorithm for the purpose of evaluation, with the goal
of finding reasonably good solutions fast. The greedy approach starts by setting all
flow rates to the minimum demand and then recursively chooses a flow to increase its
rate, with the aim of achieving maximum utility gain at the current step, as long as the
constraints (4.8)—(4.9) are respected. A solution is found when there are no remaining
flows whose rates can be further increased. For fair comparison, the greedy approach
takes exactly the same flow demands and the corresponding minimum service rates as

used by GS and DELMU. A step size of 1 Mbps is employed.

4.4.2 Total Utility

Let us first examine the overall utility performance of the proposed DELMU, in compar-

ison with that of the greedy and the GS solutions. Fig. 4.4 illustrates the distributions
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Figure 4.4: Distribution of the total utility attained by the proposed DELMU, and the benchmark

GS and greedy algorithms, for the four topologies shown in Fig. 4.3. Numerical results.

of the total network utility for the 12 flows traversing the network, over the 2,000 in-
stances tested. Observe that, among the 4 topologies used, the distribution of the total
utility obtained by DELMU is almost the same as that of the optimal solution obtained
with GS, as confirmed by the similar median values, the distance between the first and
third quartiles, as well as the whiskers (minima and maxima). Specifically, the median
values of the total utility attained by GS in Topologies 1-4 are 5.23, 4.07, 4.66, and
4.75, while those achieved by the proposed DELMU are 5.09, 3.88, 4.56, and 4.64.
In sharp contrast to the DELMU’s close-to-optimal performance, the greedy solution
attains the medians of 3.30, 3.32, 2.81, and 3.16 utility units in the 4 topologies con-
sidered. Among these, for the case of Topology 3, DELMU obtains a 62% total utility
gain over the greedy approach. It is also worth remarking that, although a greedy ap-
proach can perform within well-defined bounds from the optimum when working on
submodular objective functions (Son et al., 2015), this is clearly suboptimal in the case

of general utility functions as addressed herein.

4.4.3 Decomposing Performance Gains

To understand how DELMU achieves close-to-optimal utility, and why the benchmark
greedy solution performs more poorly, this subsection examines one single instance
for each topology, and dissects the utility values into the components corresponding to

each type of traffic (i.e. slice). Fig. 4.5 illustrates the sum of utilities for each type of
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Figure 4.5: An example instance of the utility corresponding to each traffic type in each topology.

Bars represents the sum utility of flows in the same slice. Numerical results.

traffic, attained with the greedy, CNN, and GS approaches. Note that the greedy so-
lution tends to allocate more resources to traffic with logarithmic utility (in all topolo-
gies) and respectively polynomial utility (in Topologies 2, 3, and 4). In contrast, the
CNN allocates higher rates to traffic subject to sigmoid utility in all the scenarios stud-
ied, which results in higher overall utility. This is because the greedy approach gives
more resources to the flows that yield utility gains in the first steps of the algorithm’s
execution and fails to capture the inflection point of the traffic with sigmoid utility,
which can contribute to a higher overall utility, under limited resource constraints.
Furthermore, the allocations of rates to different traffic types by DELMU show close
resemblance to the GS behaviour, which confirms the fact that DELMU achieves over-
all close to optimal utility allocations, at a lower computational cost, as will be shown

next.

Let us delve deeper into the utility attained by each flow on each slice, along dif-
ferent paths, and in Fig. 4.6 compare the performance of the proposed approach and
the benchmarks considered in the case of Topology 1. Flows corresponding to slices
that have linear, sigmoid, polynomial, and respectively logarithmic utility are indexed
from 1 to 4. Again, observe that the greedy approach assigns zero utility to traffic
subject to sigmoid utility, in stark contrast with the GS method. While DELMU obtains
the highest gains from traffic with linear and sigmoid utility on paths 2 and 3, greedy
dedicates most of the network resources to traffic with logarithmic and exponential

utility, without obtaining significantly more utility from these types of flows. DELMU
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achieves accurate inference, as the performance is nearly the same with that of GS for

all flows.

Delmu

Greedy
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Path Path
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Figure 4.6: Utility of all data flows (on different slices and over different paths) attained by greedy,
DELMU, and GS in one demand instance in Topology 1. In each subfigure, darker shades represent

higher utility and the actual values are labelled. Numerical results.

4.4.4 Real-time Inference

To shed light on the runtime performance of the proposed DELMU solution, I first
examine the average time required for inferring a single solution throughout the per-
formance analysis presented in Section 4.4.2. I compare these computation times with
those of the greedy and GS approaches over 2,000 instances and list the obtained re-

sults in Table 4.2. Note that the values for DELMU include the post-processing time.

Topology Index 1 2 3 4
GS 8.4339s | 4.6075s | 3.4492s | 4.8311s
Greedy 0.1500s | 0.1590s | 0.1178s | 0.1345s
DELMU 0.0036s | 0.0035s | 0.0025s | 0.0026s

Table 4.2: Average computation time required to obtain a single solution to the NUM problem in

Topologies 1-4 using GS, greedy, and the proposed CNN mechanism.

Observe that GS takes seconds to find a solution, while the greedy approach, although
inferior in terms of utility performance, has runtimes in the order of hundreds of mil-

liseconds for a single instance. In contrast, the CNN makes and adjusts inferences
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within a few milliseconds. That is, as compared to the greedy algorithm, CNN gener-
ally requires two orders of magnitude smaller computation time. On the other hand,
the GS algorithm, although working optimality, has three orders of magnitude higher
runtimes as compared to DELMU. Lastly, note that the CNN inference itself requires
~1.5ms per instance, and hence the post-processing dominates the overall execution
time in the first two topologies. In terms of training time, the 4 topologies were trained
together and the time taken was 16mins, making it 4mins per topology. This seems to
be high as compared to the benchmarks does not require training, we argue that once
the neural network is trained, it will be able to make rapid inference for a range of
scenarios that observe similar input-output properties. This chapter concludes that the

proposed DELMU is suitable for highly dynamic backhauls.

I complete this analysis by investigating the ability of the proposed DELMU so-
lution to handle network dynamics in sliced mm-wave backhaul settings, including
changes in traffic demand due to e.g. on/off behaviour of user applications and vari-
ations in capacity triggered e.g. by occasional blockage on the mm-wave links. Con-
sider Topology 3 in Fig. 4.3, transporting a mix of flows with linear, polynomial, and
logarithmic utility and different lifetimes, considering a 10 Mbps minimum level of
service, in all cases when a flow is active. Precisely, in Fig. 4.7 1 examine the time
evolution of the throughput DELMU allocates to flows on each slice, according to a
sequence of events. In particular, flows subject to sigmoid utility start with 0 Mbps
demands, whilst all flows of the other types on all path have each an initial demand of
200 Mbps. After 100 ms, a flow with sigmoid utility on path 2 (i.e. f7) becomes ac-
tive, adding a 400 Mbps demand to the network. At time 200 ms, partial link blockage
occurs on the link between STA 0 and STA 1, causing the corresponding capacity cy
to drop from 2,772 Mbps to 693 Mbps. f> > finishes 100 ms later.

Observe in the figure that the DELMU performs a correct allocation as soon as a
change occurs and, given the millisecond scale inference times, the transition is almost
instantaneous even at the 100 ms granularity. For instance, when f> > joins, the allo-
cation of network resources is immediately rearranged, so that the request of f>> is
mostly satisfied, whereas the rest of flows receive reduced rates. In this case, all the
flows with linear utility are reduced to close to the minimum level of service, i.e. each
to 11 Mbps rate. The drop in ¢ | capacity at 200 ms leads to a significant degradation
of the rates assigned to flows with polynomial and logarithmic utility, while the linear
and sigmoid flows remain unaffected. Eventually, at 300 ms, when flow f> > finishes,

the rate of the flows with polynomial and logarithmic utility are increased, yet remain
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Figure 4.7: Rate allocations performed by DELMU for flows of different slices and paths over time
in Topology 3 (see Fig. 4.3), as a sequence of demand and capacity changes occur as labeled at the

top of the figure. Numerical results.

below the values assigned initially, due to the inferior ¢ 1 capacity. Hence, the pro-
posed DELMU is suitable for highly dynamic backhaul environments, as it makes close

to optimal inferences fast and is able to adapt to sudden changes.

4.5 Discussion

The proposed deep learning based method, i.e. DELMU, achieves close-to-optimal
flow rate allocations in virtually sliced mm-wave backhaul scenarios with achievable
three orders of magnitude smaller computation time as compared to the optimal GS so-
lution. It is worth noting that the proposed utility optimisation framework is generally

applicable to different type of networks, but is particularly useful in mm-wave back-
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haul networks due to the requirement of precise access scheduling and rate allocation
as discussed in Chapter 3, in order to achieve carrier grade performance.

From a methodological perspective, one limitation of this study is the usage of
simulation generated numerical data. This is, however, intrinsic to the school of su-
pervised learning methods. The practical implications of such dependency on data are
two-fold. On one hand, when significant changes occur in terms of topology, range
of user demands and the dimension of the input (and output) of the neural network,
the model should be retrained. Training of a new neural network, as discussed before,
takes a couple of minutes in the topologies shown in the previous section. On the other
hand, the performance of the neural network based approach is highly dependant on
the quality of the ground-truth data obtained by the global optimisation solver. In cases
where the global optimisation solver fails to find the global optimal, the neural network
may settle on non-optimal solutions.

As a centralised approach, DELMU is subject to communication overhead including

collection of flow demands and dissemination of allocated flow rates.

4.6 Summary

In this chapter of my PhD thesis, I tackled utility optimisation in sliced mm-wave net-
works by proposing a deep learning approach that learns correlations between traf-
fic demands and optimal rate allocations. The proposed method specifically deals
with scenarios where traffic is subject to conflicting requirements and maximise non-
concave utility functions that reconcile all services, while overcoming the inherent
complexity of the problems posed. Evaluation results demonstrated that the proposed
convolutional neural network attains up to 62% utility gains over a greedy approach,
infers close to optimal allocation solutions within orders of magnitude shorter runtimes

as compared to global search, and responds quickly to network dynamics.






Chapter 5

Transport Protocols Performance in

Next Generation Cellular Networks

TCP ensures reliable data exchange through error detection, packet reordering, and
congestion control mechanisms, and hence today’s internet data traffic is dominated
by TCP (Huang et al., 2013). However, TCP’s performance is known to be liable to
variations in wireless networks, depending on how the congestion control reacts to the
unpredictable radio link environment, how much impact the protocol overhead has,
and to what level the retransmission scheme recovers packets. On the other hand,
UDP experience less transmission overhead, but provides no delivery guarantees. It
is therefore important to understand the throughput and delay experienced by users
different channel conditions.

This chapter presents simulation based performance evaluation of the two widely
used transport protocols, i.e. TCP and UDP, operating on top of LTE networks. I in-
vestigate key metrics that influence directly the user experience, such as the end-to-end
throughput, under various channel conditions and LTE protocol settings. I also identify
a number of performance issues that emerge when the current LTE channel is exposed
to inferior channel quality. Specifically, for the user located at the cell edge, the SINR
decreases significantly, hence the throughput and delay performance degrade for both
UDP and TCP traffic. Although traffic running on top of UDP obtains marginally
better throughput, it observes very high packet loss. Further, I will reveal that the
transport protocols investigated are sensitive to LTE control plane errors. Enabling
RLC acknowledged mode (AM) can mitigate partially the protocol data unit (PDU)
loss, thereby improving TCP throughput remarkably at the cell edge. However, the ac-

knowledgement scheme introduces additional overhead, thus affecting the throughput
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and delay performance under good link conditions. Finally, this chapter concludes that
in the presence of high error rates on control channels, robust modulation and coding
schemes are needed. Alternatively, the RLC acknowledged mode can be employed to

combat the packet loss, when TCP is used as transport protocol.

5.1 LTE-EPC Simulation Setup

In order to perform a practical analysis of the interaction between transport protocols
and lower layers of the LTE stack, as well as an end-to-end full-stack evaluation, this
chapter utilises the build-in LTE module of NS-3 simulator, namely LENA (CTTC,
2016). This section describes the simulation settings and reviews some of the design
aspects in LENA.!

I examine the performance of UDP and TCP downlink data traffic from a remote
server to a single UE. During each 50s simulation, the UE is assigned a 20m square
box as an area of activity, and it moves in a random direction with 3kmph velocity,
within this box. The simulations are run 14 times for each configuration, with the
UE’s area of activity placed at different distances to the associated eNodeB. The dis-
tance between the centre of UE’s active area to the eNodeB ranges from 40m to 300m,
and the distance between the centres of two adjacent boxes for two simulation runs
is 20m. 4 groups of simulations are performed under the following different types of
settings: RLC operates in unacknowledged mode (UM) with and without the existence
of control frame errors, and respectively using AM with a control frame error model
switched on and off. For each simulation scenario, both TCP and UDP are examined.
Default simulation seeds are used for all simulations, hence when horizontally com-
paring the simulation runs at the same location of UE but different simulation settings,
the channel environment, e.g. SINR, is the same.

The LTE-EPC network topology used is shown in Fig. 5.1. Specifically, the UE is
connected to a single eNodeB, which has wired connections with the Service Gateway
(SGW) and other eNodeBs. The SGW links to the remote server based on a high-
speed point-to-point (P2P) connection of 10Gbps and this link introduces a delay of
10ms. In the LTE network, the eNodeBs are grouped in three-sector sites laid out on
a hexagonal grid, as depicted in the Radio Environment Map (REM) in Fig. 5.2. In
order to evaluate realistic interference scenarios, the cell site of interest is surrounded

by 2 layers of three-sector sites, which generates interference on both data and control

I'The simulation scripts used are available at https://github.com/ruihuili/TCP_LTE_NS3.git
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channels. All nodes are assumed to be placed outdoor. Throughput and packet loss
measurements are collected by the NS-3 Flow Monitor module at the IP layer. As for
TCP congestion control protocol, by default NS-3 employs the New Reno version and
disables Selective Acknowledgement (SACK). I record the RTT and CWND trace for
all simulation runs with TCP traffic. Table 5.1 lists the overall configuration of the

simulations.
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Figure 5.1: LTE-EPC network topology.
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Figure 5.2: REM for LTE RAN control channel.

Regarding the propagation model, the ITU-R P1411 path loss model (ITU, 2015) is
used throughout the experiments, together with a log-normal shadowing model. LENA
takes fading trace computed offline using MATLAB. In the simulations, multi-path
fading conditions follow the Extended Pedestrian A profile specified in Annex B.2
of the 3GPP standard TS 36.104 (3GPP, 2016d). The fading amplitude is a random
process and fading values are computed based on the commonly used Rayleigh model,

which is a function of both time and frequency.
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Parameter Name Value

Antenna type Parabolic
Beamwidth 70°
Transmission power 46dBm

Site height 30m

Sector offset at each 3-sector site  0.5m

Inter-site distance 500m

UE height 1.5m

Carrier Frequency for downlink  2.1GHz

Carrier Frequency for uplink 1.9GHz
Bandwidth 50 RBs (10MHz)
Standard deviation of shadowing o =1

Traffic Pattern Backlogged
Packet size 1024bytes

TCP EPS bearer QNGBR_VIDEO_TCP_DEFAULT
RLC transmission buffer size 1024Kbytes

Table 5.1: Simulation settings.

Frequency-division duplexing is implemented in LENA and the Transmission Time
Interval (TTI) is Ims. The reference signal power received every TTI is used to cal-
culate the SINR, and Channel Quality Information (CQI) feedback is generated using
the SINR obtained. Interference is modelled using a Gaussian model, according to
which the overall interference power is calculated by summing up the power of all in-
terfering signals. The adopted error model for both control and data planes is based
on link-to-system mapping. Furthermore, Hybrid ARQ (HARQ) is utilised on data
channels, employing a soft combining hybrid incremental redundancy scheme with
multiple stop-and-wait, which means that the retransmissions contain only new infor-
mation with respect to the previous transmissions. The HARQ model is integrated with
the error model, and the retransmissions are arranged by the scheduler.

As per the TS 36.211 specification (3GPP, 2016a), downlink control frames, i.e.
PCFICH and PDCCH, start at the beginning of each subframe and in total last no more
than three symbols. The subframe structure in LENA is implemented accordingly
(NS-3 Project, 2016), as shown in Fig. 5.3. PCFICH indicates the actual length of
the control frame, and PDCCH mainly carries the DCI assigned by the MAC layer,
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including information about the resources allocated for the UEs. Errors in the control
channel thus result in the loss of corresponding Transport Blocks (TBs) transmitted in
the TTL

M 13 symbols 1 symbol
PUSCH & PUCCH SRS
PCFICH
& PDSCH
PDCCH
3 symbols | 11 symbols
subframe (1 TTI = 1 ms = 14 OFDM symbols)

Figure 5.3: LTE subframe structure (NS-3 Project, 2016).

5.2 Simulation Results

I begin the simulation study by analysing the throughput and packet loss in the ab-
sence of errors on the control channel, when RLC runs in AM and UM, with UDP and
respectively TCP traffic. Then I will investigate the throughput performance of TCP
when exposed to control frame errors, contrasting with UDP throughput. Further, I
compare the TCP throughput when LTE operates with RLC AM and UM. Finally, I
will examine the Congestion Window (CWND) and Run Trip Tim (RTT) traces for

TCP traffic in a number of representative scenarios.
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5.2.1 Error Free Control Channels

Fig. 5.4 depicts the average throughput and packet loss at each location, for TCP and
UDP when RLC operates with AM and UM settings and the control channels are error
free. Observe that as the distance between the UE’s active area and the eNodeB in-
creases from 40m to 300m, both UDP and TCP traffic will see a significant reduction
in throughput in both RLC modes. Specifically, UDP achieves at most approximately
0.5Mbps higher throughput than TCP in UM, and around 1Mbps higher throughput
in AM. However, TCP manages to eliminate all packet losses through its retransmis-
sion scheme, whereas UDP suffers from severe packet loss with RLC UM. With the
help of RLC ARQ, UDP packet loss is reduced approximately by half compared to the

equivalent cases where RLC operates without ARQ.
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Figure 5.4: Average TCP and UDP throughput and packet loss versus UE-eNodeB distance, when
RLC operates with AM and UM. Control channel is error free.

It is also worth noting that the scheduler takes into account only the amount of data
in RLC PDUs and discards RLC headers when making scheduling decisions. Conse-
quently, an RLC PDU may have been allocated a TB according to the amount of data
it carries, but after adding RLC and MAC headers the information may no longer fit

the TB size. In such cases RLC will perform segmentation and the PDU will require
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an additional transmit opportunity. This results in a slight UDP throughput reduction,
but has a greater impact on TCP.

From this set of results, I conclude that in the absence of control channel errors,
despite achieving lower throughput than UDP, TCP is able to recover all packets lost
in all cases. In contrast, UDP experiences significant packet loss, even though it shows
a marginally higher throughput. In real life, such behaviour can hardly satisfy data-
intensive applications such as video streaming. However, when RLC employs ARQ for
retransmission, lost or out-of-order packets can be partially recovered for UDP. Hence
the user experience can potentially be improved to some extent, without considerably
compromising the throughput.

Nevertheless, there exists a maximum number of RLC PDU retransmission at-
tempts. As per TS 36.322 and TS 36.331 (3GPP, 2016b,c), upon such events, RLC
shall inform the upper layers to trigger a Radio Link Failure (RLF). Note that RLF is
not currently implemented in NS-3, and RLC will simply stop forwarding any PDUs
when the maximum retransmission threshold is reached. However, this means that in
practice RLC may fail to recover all packets lost, and in extreme cases, it will rely on
upper layers to recover these. In such cases, UDP will take packet loss for granted,
whereas TCP will endeavour to recover as many lost packets as possible while per-

forming congestion control.

5.2.2 Control Channels Prone to Errors

In the above studied cases, note that the congestion control of TCP is hardly constrain-
ing the transmission behaviour, thanks to the HARQ that provides timely correction
of byte-wise errors, and TCP itself that detects and corrects packet losses efficiently
enough without triggering slow-start frequently. In what follows, I investigate the case
of error-prone control plane, where the control channel is assumed to be exposed to full
interference from the surrounding cells, and consequently, PCFICH and PDCCH sym-
bols become corrupt. Each occurrence of such errors in the control plane, as mentioned
previously, will result in the loss of all the TBs carried in the TTI. It can be therefore
anticipated that when UEs observe high packet loss rates, TCP may experience severe
performance degradation. Switching to RLC AM, however, can presumably recover
the packet loss to some extent. This is indeed confirmed by the simulation results
shown in Fig. 5.5.

Similar to the previous observation of throughput-distance behaviour in error-free
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Figure 5.5: Average TCP throughput with RLC AM and UM as compared to UDP throughput

with RLC UM, versus the distance to an eNodeB. Control channel error model switched on.

control channel cases, the throughput of an UE decreases dramatically when this moves
away from the cell centre and control symbols encounter errors. Fig. 5.5 also suggests
that the degradation is more significant for TCP. This is because that when the link
quality is poor, the TCP is aware of the high packet loss, therefore it reduces the CWND
and carries out retransmissions to recover the lost packets. Such retransmissions will
degrade the throughput in UM, particularly at the cell edge scenarios.

Further, when the RLC AM is enabled, a number of packet lost due to control
symbol errors can be actively recovered. Then fewer duplicate acknowledgements
(DupAcks) will be received by the TCP state machine at the transmitter’s side, hence
congestion as seen by TCP is perceived as less serious and larger CWNDs allow more
packet to be transmitted. Consequently, the TCP throughput is improved, up to a level
that is just marginally lower than the typical UDP throughput.

On the other hand, when the UE is located near the eNodeB, e.g. at the distance of
40 to 80m, both the data and control planes observe less interference and path-loss (i.e.
better SINR). Thus the impact on packet loss is much less significant than at the cell
edge, and subsequently RLC AM commits fewer PDU retransmissions. The PDU seg-
mentation induced by AM, however, is the dominate cause of throughput decrease, as
can be seen in Fig. 5.5. Specifically, when the UE-eNodeB distance is below approx-
imately 80m, TCP with AM observes a moderate throughput reduction of 0.5Mbps
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as compared with TCP with UM, which is in line with the observation made from
Fig. 5.4. A potential approach to leverage RLC AM in TCP performance is to switch
between the AM and UM modes based on channel conditions. One simple way to
implement this is to automatically made such switch based on user location. Focusing
to this scenario, as shown by the vertical dotted line at around 80m from the cell cen-
tre, if the user is located below this distance, RLC UM performs well enough. When
the UE-eNodeB distance is greater than 80m, employing the AM mode would bene-
fit throughput performance. The generalisation of this rule remains to be investigated

further.

5.2.3 TCP Congestion Window Behaviour

Next, I study the CWND size in detail, and compare CWND values under different
scenarios as before, i.e. with both RLC AM and UM in the presence of control channel
error and not, at different locations. Fig. 5.6 shows the median value of the CWND
size over the simulation run time. As can be observed in the figure, in the absence of
control channel errors, the median CWND:s is relatively higher as compared to when
the control channel is susceptible to errors. This is because in the absence of frequent
and consecutive packet loss, the CWND will be increased every RTT. When moving
away from the cell centre, the UE may observe an increase in RTT and therefore the

CWND increase is slower. The median CWND value is thus lower.
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Figure 5.6: Median CWND when the UE located at different distances from the eNodeB.

When control channel errors exist but the distance between UE and eNodeB is
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Figure 5.7: CDF of the RTT at different locations without control plane errors under RLC AM
and UM.

small, and consequently the packet loss rate is also lower, the CWND is maintained
relatively high. This suggests that under good link quality, congestion control is hardly
constraining the transmission of packets. Conversely, when control symbols become
corrupt and RLC does not employ AM, the CWND stays low, which will result in
a very limited number of transmissions allowed by the TCP congestion control algo-
rithm. This likely contributes to the TCP throughput degradation observed when UM is
used, and explains why the UDP is much higher. Activating ARQ at the RLC layer, the

CWND is consistently larger and more TCP segments are allowed to be transmitted.

The time required for a complete TCP segment transmission, i.e. from the point
when the segment leaves the transmitter until the successful reception of an ACK, is
defined as RTT. Fig. 5.7 shows the CDF of the RTT when either AM or UM employed
and the UE—-eNodeB distance is respectively {40, 80, 120, 160, 300}m. Unsurpris-
ingly, for both AM and UM cases, the larger the UE—eNodeB distance, the poorer the
link quality becomes and the longer the RTT tends to be. This behaviour is likely be-
cause 1) more retransmissions take place, and hence a packet occupies more TTIs; and
2) queues build up at lower layers and thus PDUs wait longer to be transmitted. When
compared with UM at the same locations, AM observes marginally higher RTT over-
all. This can be explained by the issue of unwanted segmentation taking place at the

RLC layer, as already mentioned in the above paragraphs. Moreover, the gap between
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median values attained with the UM and AM schemes at the same location increases
as the UE—-eNodeB distance grows. Concretely, these gaps are {0.02, 0.03, 0.04, 0.05,
0.09} respectively for the distance set sampled, i.e. {40, 80, 120, 160, 300} m. This is
presumably because RLC has to retransmit more frequently the PDUs as the channel
quality worsens, therefore delaying the successful delivery of a TCP segment.
Considering the throughput performance discussed previously, I argue that cell
edge users will experience both increased delay and lower throughput, which could

potentially lead to degraded user experience.

5.3 Discussion

This study aimed to provide insights into the interaction between classic transport pro-
tocols and the LTE stack, which is currently widely employed in mobile networks.
The main limitations of my work are that the analysis is purely based on simulations
and the study confined to only one version of TCP congestion control paradigm. As
potential future directions, the findings presented in this chapter could be enhanced
with an experimental study could unravel further practical implications. On the other
hand, it is also important to gain better understanding of any reciprocal influences be-
tween newer transport protocol versions (e.g. BBR, QUIC, and newer TCP congestion
control algorithms), and emerging wireless technologies, e.g. mm-wave access and
backhauling. Note however that, different flavours of TCP may bring marginal im-
provements in TCP performance, but the overall findings should still hold. In terms of
TCP throughput performance, this should be upper-bounded by that of UDP, while the
packet loss rate incurred by TCP should remain small, as shown in Fig. 5.4. More-
over, the conclusion drawn from the comparison between RLC AM/UM mode should
intuitively hold in better performing TCP versions even though the significance may
be subject to change.

Following my work, Polese ef al. have provide early results of cell-edge perfor-
mance in mm-wave frequency bands, and the authors observe similar TCP throughput
degradation, revealing a reduction when MAC HARQ is disabled (Polese et al., 2017).
This study further leverages different radio access interfaces, including LTE deployed
in legacy frequencies and mm-wave bands, to support multi-path TCP connections.
Experiments show that multi-path TCP flows traversing both legacy frequency and

mm-wave links, when compared to single-path or multi-path TCP flows traversing
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mm-wave only links, attain higher throughput and lower latency at mid-cell (100m)
and cell-edge (150m) distances. The authors therefore conclude that the presence of a
secondary reliable LTE path improves the overall throughput of the connection.

In late 2016, Google developed a new congestion control algorithm named BBR
(Cardwell et al., 2016). BBR is a model-based congestion control mechanism that
maintains an explicit model of the network using the recent maximum bandwidth and
round-trip time experienced by the outbound packets. Unlike loss-based congestion
control methods, BBR suits better the contemporary network interface controllers with
Gbps links. Although BBR achieves higher throughput and lower latency, it is nonethe-
less criticised for being unfair to other flows and causing considerable packet loss
(Hock et al., 2017). Moreover, Google QUIC (Hamilton et al., 2016) exploits multi-
plexed connections between two UDP endpoints, in order to reduce the latency and
avoid additional data loss experienced by TCP in lossy channel conditions. However,
as working on top of UDP, it does not provide delivery guarantees, as TCP does. It is
therefore less competitive when compared with TCP, in terms of loss rate and buffer-
ing, especially in large propagation delay scenarios (Yu et al., 2017).

Therefore, for future research, the question of what the best transport protocol for

the ever changing Internet ecosystem remains open (Huston, 2018).

5.4 Summary

This chapter investigated the impact of RLC AM/UM configurations and control chan-
nel error induced in LTE networks that influence the performance of TCP and UDP.
One can conclude that as the distance between UE and eNodeB increases, the perfor-
mance of both transport protocols decreases significantly. When the LTE control plane
is susceptible to errors at low SINR, i.e. cell edge, further degradation in the perfor-
mance of TCP and UDP was observed. On the other hand, data packet loss is currently
relying on data plane ARQ schemes for recovery. Consequently, the RLC AM over-
comes the performance bottleneck introduced by control symbol errors up to a certain
level, this can be beneficial for TCP at the cell edge. Therefore, robust modulation and
coding schemes are needed to mitigate errors in the control channels of LTE networks,
in order to address the performance issue of the transport protocols studied at the cell
edge. Future work can be carried out to improve the transport protocol design and
enhance user experience, for instance by enabling cross-layer cooperation — one pos-

sible approach is to switch the RLC AM/UM mode by taking into account the channel
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conditions, the transport protocol employed, and the transport protocol attributes.
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Chapter 6

Mobility Optimisation of

Network-on-Drones

In emergency services post floods, earthquakes, or nuclear plant disasters, mobile base
stations mounted on UAVs provide viable wireless coverage solutions in challenging
landscapes and conditions, where cellular/WiFi1 infrastructure is unavailable and access
is too difficult for human drivers of current cell-on-wheels solutions (Cellsite Solutions
LLC, 2017), or carriers of wearable base stations (Air Lynx, 2018). Flying at lower
altitudes and supported by advanced hardware and software platforms, UAVs have
received increasing interest from the telecom industry, as potential bearers of aerial

base stations in temporary cellular deployments (FAA, 2017).

Operating multiple such airborne base stations, to ensure reliable user connectiv-
ity, demands intelligent control of UAV movements, as poor signal strength and user
outage can be catastrophic to mission critical scenarios. Recent advances in deep re-
inforcement learning (DRL) methods have led to a number of successful applications,
e.g. AlphaGo (Silver et al., 2017), and successful research outcomes of applying DRL
to various domains that are subject to large action and state spaces, which otherwise
would be difficult to solve (Schmidhuber, 2015). Towards this end, this chapter inves-
tigates a DRL based solution to tackle the challenges of base stations mobility control.
Asynchronous Advantage Actor-Critic (A3C) algorithm is employed, and I design a
custom reward function, which incorporates SINR and outage events information, and
seeks to provide mobile user coverage with the highest possible signal quality. Pre-
liminary results reveal that the DRL solution converges after 4 x 10° steps of training,
which corresponds to approximately 2.5 hour in real life on a desktop machine, after

which it outperforms a benchmark gradient-based alternative, as the proposed solution
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attains 5dB higher median SINR during an entire test mission of 10,000 steps.

6.1 System Model

We consider a deployment of B airSTAs providing broadband wireless access to a
handful of users in emergency network settings. The system complies with the LTE
isolated E-UTRAN specified in (3GPP, 2015) with simplified LTE functionality, e.g.
disabled MME authentication, to simplify the overall architecture and prolong network
lifetime. Each airSTA serves a number of UEs and is connected wirelessly (via satellite
or u-/mm-wave links) to a central controller. The controller hosts a DRL agent that
learns to make optimal decisions about the airSTAs mobility control. We assume the
backhaul communication between the airSTAs is operated on an orthogonal channel
from the access links, and airSTAs do not communicate directly with each other.

Wireless Channel: Consider airSTAs share the same frequency band, i.e. reuse
factor 1. I focus on the downlink communication, assuming the SINR is directly related
to the quality of service received by UEs. The transmit power employed by airSTA b to
auser is P, and is denoted by Gy, , the channel gain between airSTA b and user u, which
is a linear combination of the free-space path-loss /;, ,,, shadow fading, and antenna gain
G,. The log-distance path-loss [, , can be computed following the 3GPP model for
urban cellular scenarios with standard coefficients o and B, i.e. /, , = ot + Blog(Dp ),
where Dy, is the Euclidean distance between b and u. Given I, CB\b the set of
airSTAs that interfere with b and Ny, the power of per-channel additive white noise,
the SINR observed by UE u is:

PpGp

No+XYper, PG u

SINR,, = 6.1)

UE Mobility and LTE Handovers: Assume a reference group mobility model, by
which users cluster around group centres that move along random way points (Hong
et al., 1999). The motivation for employing this mobility model is that, in the envi-
sioned emergency scenario, rescue and medical teams, or fire fighters, rush towards a
target scene while the population may be moving away from that location. Further, as
both UEs and airSTAs continuously change their position, standard LTE S1 based han-
dover policy is employed including hysteresis and time-to-trigger to avoid ping-pong
effects. Specifically, when the received signal strength is below a certain threshold
SINR;, for a duration of f;igger, the user can be handed off to adjacent cells, if a new

airSTA provides an SINR higher by & than the value currently measured.
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6.2 Problem Formulation and the Deep Reinforcement

Learning Method

This chapter address mobility control of airborne airSTAs in emergency settings, con-
sidering stochastic wireless channels and user mobility, as modelled in Sec. 6.1. While
this is a challenging problem subject to large state dimension including users location
and user and airSTA association as well as exponentially increasing action space, deep
reinforcement learning (DRL) has achieved promising results in similarly complex
tasks, such as Atari game play (Mnih et al., 2015) and adaptive video streaming (Mao
etal., 2017). This motivates the application of a DRL method, formulating the mobility
control task as Markov Decision Process (MDP), and designing an A3C based solution
tailored to the target networking scenario. Alternative to the proposed DRL approach,
optimal control or exhaustive search seem to be plausible solutions. However, optimal
control methods require precise models of the environment, which are not always easy
to obtain in the emergency scenarios considered. An exhaustive search method, as the
results presented will show, gain marginal performance improvements at the cost of
significantly longer computation times.

Markov Decision Process (MDP): The airSTAs mobility control can be modelled
as a 5-tuple MDP, < §, 4, P, R,y >, where § is the state of the environment including
airSTAs locations, Lg(t), UEs locations, L¢;(t), and their associations, O.g ¢;(t). 4 is
the action taken by each agent, i.e. the movement direction of each airSTA, M (¢), and
P is the state transition matrix. Precisely, the system moves from state s to s’ following
action a according to P2, =P[S; | = s'|S; = s,A; = a]. R is the reward function, which
quantifies the system performance following an action, i.e. X% = E[R,1|
St = 5,A; = a]. In the problem, this will depend on the SINR experienced by the UEs,
as I detail next. y € [0, 1] is the discount factor, which dictates the importance of future
rewards.

A policy 7 is the probability distribution of taking an action a in a given state s,
i.e. m(als) = P[A; = a|S; = s]. To attain an optimal policy 7, I employ a DRL method
and give an overview of the learning procedure in Fig. 6.1. As shown in the figure,
the agent updates a policy . By this, at time step ¢, given state s; including UEs
and airSTAs locations and their associations, the agent takes an action a;, according
to which each drone b € B moves from (x;,y5,25) to (x},,y},25). The agent thereby
receives a reward r;, and the system enters a new state s;1. This process is repeated

until the episodic return, i.e. the sum of future discounted rewards, converges. This
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Figure 6.1: Overview of the learning loop for the proposed intelligent UAV mobility management

agent.

indicates that an optimal policy was found.

There exist two main approaches to solving control problems through reinforce-
ment learning (RL): policy-gradient RL methods learn by ‘trial-and-error’ a policy,
1.e. the probability distribution of actions to take given the state of the environment;
value-based methods learn to estimate the value for each action. Combining these two
approaches, an actor-critic RL agent employs an ‘actor’ that performs actions to im-
prove the policy, while a ‘critic’ makes judgements on the actor’s performance and

learns to estimate the action values.

To tackle the UAV mobility control problem, this thesis proposes a custom asyn-
chronous advantage actor-critic (A3C) algorithm. A3C is a state-of-the-art actor-critic
method that exploits multi-threading to create several learning agents, each exploring
the state space in their own environment and updating periodically a global neural net-
work with learned knowledge (Mnih et al., 2016). The key advantages of this approach
are that it can be trained on a CPU, it de-correlates past experiences gained by each
learning agent, and it converges rapidly. Such paralleled learning is a viable alternative

to experience replay (i.e. Deep Q-Learning), as it removes large memory requirements.

The proposed A3C-based solution employs two neural networks that have the most
simple deep learning architecture, i.e. the multi-layer perceptron (MLP). MLPs have
fully connected layers and the neurons in the hidden layers implement non-linear ac-
tivation functions of the output of the previous layer. The parameters (weights and
biases) of these functions are obtained by training through back-propagation (LeCun
et al., 2015). In this case, one of the MLPs acts as the actor and the other as the critic.

Both of them employ 2 hidden layers, each consisting of 200 neurons.

I design a reward function that captures the specifics of mobile users served by
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airborne airSTAs, aiming to ensure best connectivity, i.e. highest SINR and lowest

outage likelihood. Hence, the proposed reward function is

— N,
R=0%SINR— 22, (6.2)
Nug
where SINR is the mean SINR computed across all the Ny g users, 6 denotes a normal-
ising factor, and N, is the number of UEs whose SINR is below a minimum service

requirement.

6.3 Evaluation and Results

6.3.1 Simulation Setup

Consider a 100x 100 grid area, with a grid cell width of 5Sm. Within this area, 40
users move in groups of 10 UEs, following the group reference model (Hong et al.,
1999), and are provided with connectivity by airSTAs mounted on UAVs. For each
user the simulator computes the SINR of the link to the serving airSTA, using the
model described in Sec. 6.1. A sample SINR heatmap and UE locations are illustrated
on the left in Fig. 6.2. The histogram on the right shows the distribution of the SINR
experienced by users in this instance. The UAVs move at a fixed altitude, ! i.e. 10m
from the ground level. The movement of a airSTA at each time step is chosen between
4 candidate directions (i.e. N, S, W, E) towards adjacent points on the grid, or idling
(no move).

The DRL model is trained with 10 random seeds, each time with 1,000 training
episodes. A single episode lasts 2,000 time steps and the locations the UAVs are reset
to the same coordinates at beginning of each episode. At each discrete time step,
the mobility control agent performs actions based on the current learning policy, and
chooses from 5% = 625 possible actions to take (4 directions or movement plus idling,
4 UAVs). The simulation parameters used are summarised in Table 6.1.

The model is trained and tested on a 8-core desktop with Intel Xeon W-2125 CPU
clocked at 4.00GHz, and Python library TensorFlow is employed to implement the
neural networks (Abadi et al., 2016).

't is expected that even with 3D mobility management, adjustments in transmit power and gain will
lead to the similar ground signal coverage.
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Parameter Value
BS Transmit power 20 dBm
E Antenna gain 2dB
cg Log n?rmal .shadowmg N0, 2)
2 Gaussian noise -121 dBm
é Handover time-to-trigger | 3
= | Handover threshold 1dB
Minimum SINR -5dBm
Learning rate 0.0001
o Discount factor 0.9
g Number of A3C workers | 4
3 Global update step 10
Normalising factor 6 0.05

Table 6.1: Simulation parameters.
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Figure 6.2: Left: SINR heatmap and UEs location (grey dots). Right: The corresponding distri-

bution of UEs’

experienced SINR.

Benchmark: To assess the performance of the proposed DRL solution, a bench-

mark SINR gradient based method is devised, and tested with the same network set-

tings as with the proposed DRL approach. At each time step, this benchmark computes

the average SINR at the associated UEs along each of the possible directions of move-

ment. It then moves that UAV in the direction of the lowest average SINR. By this

approach, the aim is to avoid outage while maintaining good signal quality for all the

UEs served.
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Figure 6.3: Moving average of the episodic return during 1,000 training episodes with different
random seeds. Solid line represents the mean; shaded area represents the region between maxi-

mum and minimum return.

6.3.2 Simulation Results

Training Convergence: At the end of each episode, the moving average of the episodic

return R is computed using the following formula:
R.=0.01%r.,+0.99R, (6.3)

where r,, is the total reward of the episode. To examine the learning convergence,
Fig. 6.3 plots the evolution of &. The training converges within 200 episodes (i.e.
4% 10 steps), corresponding to approximately 2.5 hrs of training in real world. Such
training can be performed once during pre-deployment stage, after which the agent can
be used for multiple missions, given the wireless channel characteristics remain largely
similar. Observe that during this phase the proposed A3C solution improves the aver-
age episodic return from around -50 to 100, with the minimum value being improved
from -280 to 80. Once trained, the agent can be used directly to make decisions about
airSTAs movement, according to the current conditions.

Performance: Ultimately, this chapter concerns quantifying the performance gains
the DRL approach can attain over other solutions, such as the SINR gradient-based
benchmark considered. To this end, the trained neural network model was trained
over 10,000 steps, resetting the environment every 2,000 steps, and examine the signal
quality provided by both approaches. Specifically, in Fig. 6.4 I plot the cumulative
distribution (CDF) of the SINR experienced by all users with the benchmark scheme
and the proposed DRL algorithm, studying also the impact of the number of training
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Figure 6.4: CDF of the SINR attained by all users with the proposed DRL method after 100,
500, 1,000, and 2,000 training episodes (EPs), the benchmark gradient method, and the optimal

solution. Each scheme is tested over 10,000 testing steps.

episodes (i.e. 100, 500, 1,000, and 2,000 episodes) on the performance achieved.
Moreover, in order to understand the performance difference between the proposed
method and the best performing policy, Figure 6.4 includes the SINR distribution of
such optimal solution. This is obtained by searching through all the possible moves

and choosing the one leading to the highest SINR value.

The results confirm that the proposed DRL solution achieves a 5dB improvement
of the median SINR, over the gradient-based benchmark. If considering -5dB as the
signal outage level, the proposed DRL scheme only experiences approximately 5%
user outage, which is one forth of that experienced by the benchmark gradient method,
1.e. 20%. When compared with the optimal solution, the lower 40% of the SINR
distribution achieved with the DRL approach overlaps with that of the optimal solution.
The median SINR of the DRL solution is approximately 2.5dB lower than the optimal,
but the computation time of the DRL approach during inference is on average only 0.02
of that required to find the optimum. The results further confirm that after convergence,
the learning algorithm performs stably. Specifically, the distribution of the SINR after
2,000 training episodes achieves a median value that is only marginally better than
that of an algorithm trained over 500 episodes. Let us conclude that the proposed
DRL scheme for mobility control of airborne airSTAs attains more than 3 x higher
median SINR and 4 x lower outage rate compared to the gradient-based benchmark.

Furthermore, the proposed solution performs stably after training.
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6.4 Discussion

The envisioned deployment of the proposed emergency networking solution relies on
pre-deployment training of the mobility management agent, which is a lightweight
MLP network that takes mobility control decisions for the airSTAs fleet at each time
step, in a simulated environment. Specifically, the simulation environment provides
a life-like signal propagation environment with channel metrics that can be gathered
from similar emergency settings. The simulation environment should also observe
close resemblance to the actual deployment of the airSTAs system, e.g. number of
airSTAs, landscape of the deployment environment, which guarantees mission critical
requirements to a certain degree. Once trained, the mobility management agent should
be able to perform control of the fleet movement in practical deployments with a range
of similar wireless channel propagation conditions and system settings. The model
should undertake extensive and thorough testing before being deployed to guarantee

security of operation.

In this Chapter, I focused on the wireless access part of the communications and the
solution proposed is based on the assumptions of centralised control and the existence
of efficient backhauling for the airSTAs fleet. In simplified scenarios airSTAs can be
connected to a central controller via single-hop wireless channels that are orthogonal
to the data channel. It is important to notice that the communication overhead of
such centralised protocol would increase linearly as the size of the single-hop network
grows. Although I envision such overhead can be accommodated in the PDCCH or

PBCH (Physical Broadcast Channel), this remains a limitation of the current work.

As the network size grows, multi-hop backhauling should also be enabled to sup-
port inter-airSTA communications, so that airSTAs located closer to the gateway will
relay packets for those are far away from the gateway. This, however, will further com-
plicates the system model, as the backhaul topology and inter-airSTA link rates will
introduce constraints on the capacity of individual airSTAs. One may consider to inte-
grate the resource allocation mechanism proposed in Chapter 3, to achieve end-to-end
flow throughput fairness, particularly when the link budget or hop-count encountered
by data flows traversing the backhaul are heterogeneous. Another potential research
direction is to take into consideration of power consumption hence limited life time of
each airSTAs, by incorporating models of energy expenses in both transmission power

and UAV movements.
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6.5 Summary

This chapter introduced a deep reinforcement learning solution for the mobility control
of multiple airborne base stations, with the goal of providing reliable connections to the
users in the scenarios where wireless infrastructure is unavailable. This chapter took
a A3C approach and designed a reward function that captures the specifics of such
scenarios. By means of simulation experiments of this study reveals that the proposed
DRL algorithm converges fast, and achieves 5dB higher median SINR and 4 x lower
outage range, as compared to a gradient-based benchmark solution, achieving close-to-
optimal performance while requiring only 0.02 of the total computation time required

for searching the optimum.



Chapter 7
Conclusions and Future Directions

This thesis made several key contributions towards important resource optimisation
problems in the domain of 5G mobile networks. Starting with mm-wave multi-hop
backhauling, the thesis presented an airtime allocation and scheduling mechanism that
can achieve max-min fair rate allocation among aggregate data traffic flows. Then, I
presented an utility framework to describe the diverse performance requirements en-
countered by 5G, and detailed a rate allocation mechanism that optimise this mixed
utilities via a deep learning approach. Furthermore, this thesis studied end-to-end net-
work performance at the transport layer, specifically on the interactions between legacy
transport protocols, i.e. UDP and TCP, and the acknowledgement mode (AM) of RLC
in the current 4G LTE networks under different data and control plane settings. Fi-
nally, the thesis presented a study on mobility management of base stations mounted
on UAVs via a deep reinforcement learning approach.

Based on the results obtained throughout this PhD project, there are a number of

potential research directions identified, which are detailed below.

1) Model compression and acceleration of machine learning models. Towards
more agile deployment of machine learning models in mobile networks, especially
when involving users’ end terminals, model compression is necessary to extend the
battery life and preserve the memory space available in mobile devices or on the mo-
bile edge. Popular methods in image processing such as parameter pruning and shar-
ing (Gong et al., 2014), tensor decomposition (Kim et al., 2015) and more recently,
knowledge distillation (Hinton et al., 2015), can be exploited for both convolutional
and fully connected neural networks (Cheng et al., 2018). When applying these tech-

niques to specific problems, either for the tasks tackled in this thesis i.e. utility op-
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timisation and mobility management or other networking related topics, it is to be
investigated which compression algorithm suits the problem best and what the right

trade off between the level of compression and the loss in accuracy should be sought.

2) Backhaul traffic routing, power consumption, and user association consider-
ations with airborne base stations. Chapter 6 provides a feasibility study of em-
ploying a deep reinforcement learning framework, namely A3C, in emergency cellular
network deployments. A couple of future directions have been identified through this
study. One is to take into consideration multi-hop backhauling to support inter-airSTA
communications, in order to cope with larger network sizes. This will lead to a more
complicated system model, as the backhaul topology and link rates will introduce con-
straints on the capacity of subsets of flows traversing certain paths. Routing naturally
becomes an important task that requires to be solved with objectives such as optimal
network throughput. Moreover, as UAVs are battery-powered, power consumption
models should introduce further constrains on the lifetime of each UAV, when taking
into account the transmission power and movement of UAVs. Another potential re-
search direction is to consider user association in such scenarios, to achieve high user

throughput and airSTA load-balancing.

3) Decentralised decision making in airborne base stations. Based on the prelim-
inary study on mobility management of airborne base stations introduced in Chapter 6,
a decentralised multi-agent learning approach can be employed to relax the assumption
of centralised control of the multi-UAV system. This will presumably reduce the com-
munication overhead and backhauling traffic load among UAVs, at the potential cost
of performance accuracy, due to the lack of global knowledge. The problem can be
formulated into a partially observable Markov decision process, and can be treated us-
ing multi-agent reinforcement learning methods, for example where each UAV learns

their own policy while treating the other UAVs as part of the environment.

4) Evolving economic models for mobile networks. Along the line of the util-
ity framework proposed in this thesis for 5G, a more complex economic situation for
multi-service networks can be considered. As the future generation of mobile net-
works is providing service to more than just smart devices, but a diversified collection
of businesses and service portfolio including digital advertising, gaming, and content

delivery/caching (Intel, 2018), more sophisticated economic models can be devised.
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Utility optimisation concerning requirements from this range of clients can potentially
optimise revenue. On the other hand, smart pricing schemes for network resources as

commodities may also be applied.

5) Traffic and network capacity forecast. More accurate provisioning of network
resources requires incorporating forecasting schemes to estimate users demand and
available network capacity. Recent work investigates long-tem forecasting (Zhang and
Patras, 2018), yet this needs to be tailored to network specific scenarios, i.e. dense
urban deployments or emergency self-deployable network settings, and more impor-

tantly, short-term forecasting for more precise and rapid resource partitioning.
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