
TinyTrain: Resource-Aware Task-Adap5ve Sparse Training of DNNs at the Data-Scarce Edge

TL;DR
A data-, memory-, and compute-efficient on-device training approach at the edge that
dynamically adapts to target tasks on the fly.

TinyTrain
We present TinyTrain, a novel framework that enables efficient training of DNNs on
data-scarce, memory-severely-limited, compute-constrained edge plaIorms. This is
enabled by:

I. A dynamic and task-adap(ve sparse-update approach that fine-tunes only part of
the model's parameters.

II. A mul(-objec(ve parameter selec(on criterion for layer/channel selec5on* that
co-op5mises accuracy, compute and memory footprint, specially designed for
resource-constrained plaIorms.

Conclusions
💻 We have developed the first realis5c on-device training framework, TinyTrain,
solving prac5cal challenges in terms of data, memory, and compute constraints for
edge devices.

🤸 TinyTrain meta-learns in a few-shot fashion during the offline learning stage and
dynamically selects important layers and channels to update during deployment.

🏋 Targe5ng broadly used real-world edge devices, TinyTrain achieves 9.5× faster and
3.5× more energy-efficient training over status-quo approaches, and 2.23× smaller
memory footprint than SOTA methods, while remaining within the 1 MB memory
envelope of MCU-grade plaIorms.

References
[1] ‘SparseUpdate’ Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and Han, S. On-Device Training Under 256KB Memory. In NeurIPS
2022.
[2] ‘TinyTL’ Cai, H., Gan, C., Zhu, L., and Han, S. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. In NeurIPS
2020.
[3] ‘MetaDataset’ Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Manzagol, P.-
A., and Larochelle, H. Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. In ICLR, 2020.
[4] Turner, J., Crowley, E. J., O’Boyle, M., Storkey, A., and Gray, G. BlockSwap: Fisher-guided Block Substitution for Network
Compression on a Budget. In International Conference on Learning Representations (ICLR), 2020.

Intro
📱 On-device training is essen5al
for user personalisa5on and privacy.

🏚 Extremely resource-constrained
consumer plaIorms are ubiquitous,
but training DNNs on these
plaIorms is so far impossible or
takes imprac5cally long or with
substan5al accuracy loss.

🎯 Exis5ng efforts focus on
addressing the first two challenges
(compute & memory) while
assuming abundant labelled data
are available.

Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D. Lane, Cecilia Mascolo

Evalua5on Sesngs
• Three NN architectures: MCUNet, MobileNet, and ProxylessNASNet.

• Baselines: None, FullTrain, LastLayer (Training the last layer only), TinyTL [2], and
SparseUpdate [1]

• Meta-datasets [3]: 9 cross-domain datasets e.g. Traffic Signs, Flowers, Aircraus.

• Target plaIorms: Raspberry Pi Zero 2 and Jetson Nano

Evalua5on Results

Table II. Comparison of the memory footprint and
computation cost for a backward pass.

Fig 3. End-to-End Latency (left) and Energy Consumption (right) of the on-device training methods on three architectures.

Contact: {yd.kwon, rui.li}@samsung.com

Figure 1: Cross-domain accuracy (y-axis) and compute cost in MAC
count (x-axis) of TinyTrain and existing methods, targeting

ProxylessNASNet on Meta-Dataset. The radius of the circles and the
corresponding text denote the increase in the memory footprint of

each baseline over TinyTrain. The dotted line represents the accuracy
without on-device training.

0 10 20 30 40

�������
�����������������	
��

50

55

60

65

70
��
��
��
	
��
��
��
��
��
�

FullTrain
x1098

Las Layer
x1.36

TinyTL
x692SparseUpda e

x2.23

TinyTrain (Ours)
x1.0

Table I. TinyTrain outperforms all the baselines w.r.t. top-1 accuracy with three architectures on nine cross-domain datasets

Figure 2: Overview of TinyTrain.

��� ��� ��� ��� �	�
Backward Pass Memory (KB)

�

�

��

To
p-
1
A
cc
 r
ac
y

Fisher L2 Norm Random

2.1 pp
higher acc

2.5 pp
higher acc

1.9 pp
higher acc

Non
e

Fu
ll

T a
in La

st

La
ye

Tin

yT
L

Sp
a s

e

Upd
ate Tin

y

T a
in

30

40

50

60

70

80

�

��
��
�
		
�
�	
�

44.5

66.9

54.6

66.1
64.3 65.6

58.7

67.3

60.7

68.6 68.9 69.3

w/o meta-t aining w/ meta-t aining

Fig 4. Ablation Study: Effect of Meta-training (left) and Dynamic Channel Selection (right).

TinyTrain achieves:

2.6-7.7% higher accuracy than SOTA

3.6-5.0% higher accuracy compared to FullTrain

while requiring:

987x smaller memory & 7.12x smaller compute
compared to FullTrain

1.96x smaller memory & 1.65x smaller compute
compared to SOTA

TinyTrain achieves 7.5-11.2x lower latency & 2.8-4.2x lower energy consump(on compared to FullTrain.

Our Abla5on study suggests i) Offline meta-training increases TinyTrain’s accuracy by 5.6 pp on average; ii)
Dynamic channel selec(on increases accuracy by 0.8-1.7 pp and 1.9-2.5 pp on average compared to sta5c
channel selec5on based on L2-Norm and Random, respec5vely.

number of multiply-

accumulate (MAC)

operations in layer inum
ber

of

para
meter

s

of l
ayer

 i

normalised by max

value across al
l layers

L of the model

Fisher potential of layer i [4]
Multi-objective

Parameter Selection
criterion

 where
Pi = ∑

o
Δo Δo = 1

2N
N

∑
n

(
D

∑
d

and gnd)2

N: #samples

Feature dim of each
channel

gradient

activations

Challenges in the targeted extreme-Edge AI training:

Compute-, Memory-, and Data-Scarcity

*This is carried out efficiently on-device with a single back-propagation per task, avoiding the burdensome search process
through a few thousand tests of different configurations [1].

