
TinyTrain: Resource-Aware Task-Adap5ve Sparse Training of DNNs at the Data-Scarce Edge

TL;DR 
A data-, memory-, and compute-efficient on-device training approach at the edge that 
dynamically adapts to target tasks on the fly.

TinyTrain 
We present TinyTrain, a novel framework that enables efficient training of DNNs on 
data-scarce, memory-severely-limited, compute-constrained edge plaIorms. This is 
enabled by:  

I. A dynamic and task-adap(ve sparse-update approach that fine-tunes only part of 
the model's parameters.  

II. A mul(-objec(ve parameter selec(on criterion for layer/channel selec5on* that 
co-op5mises accuracy, compute and memory footprint, specially designed for 
resource-constrained plaIorms.  

Conclusions 
💻  We have developed the first realis5c on-device training framework, TinyTrain, 
solving prac5cal challenges in terms of data, memory, and compute constraints for 
edge devices. 

🤸  TinyTrain meta-learns in a few-shot fashion during the offline learning stage and 
dynamically selects important layers and channels to update during deployment. 

🏋  Targe5ng broadly used real-world edge devices, TinyTrain achieves 9.5× faster and 
3.5× more energy-efficient training over status-quo approaches, and 2.23× smaller 
memory footprint than SOTA methods, while remaining within the 1 MB memory 
envelope of MCU-grade plaIorms.
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Intro 
📱  On-device training is essen5al 
for user personalisa5on and privacy.  

🏚  Extremely resource-constrained 
consumer plaIorms are ubiquitous, 
but training DNNs on these 
plaIorms is so far impossible or 
takes imprac5cally long or with 
substan5al accuracy loss.  

🎯  Exis5ng efforts focus on 
addressing the first two challenges 
(compute & memory) while 
assuming abundant labelled data 
are available.
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Evalua5on Sesngs 
• Three NN architectures: MCUNet, MobileNet, and ProxylessNASNet. 

• Baselines: None, FullTrain, LastLayer (Training the last layer only), TinyTL [2], and 
SparseUpdate [1] 

• Meta-datasets [3]: 9 cross-domain datasets e.g. Traffic Signs, Flowers, Aircraus. 

• Target plaIorms: Raspberry Pi Zero 2 and Jetson Nano 

Evalua5on Results

Table II. Comparison of the memory footprint and 
computation cost for a backward pass.

Fig 3. End-to-End Latency (left) and Energy Consumption (right) of the on-device training methods on three architectures.
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Figure 1: Cross-domain accuracy (y-axis) and compute cost in MAC 
count (x-axis) of TinyTrain and existing methods, targeting 

ProxylessNASNet on Meta-Dataset. The radius of the circles and the 
corresponding text denote the increase in the memory footprint of 

each baseline over TinyTrain. The dotted line represents the accuracy 
without on-device training. 
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Table I. TinyTrain outperforms all the baselines w.r.t. top-1 accuracy with three architectures on nine cross-domain datasets 

Figure 2: Overview of TinyTrain. 
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Fig 4. Ablation Study: Effect of Meta-training (left) and Dynamic Channel Selection (right).

TinyTrain achieves:  

2.6-7.7% higher accuracy than SOTA  

3.6-5.0% higher accuracy compared to FullTrain  

while requiring: 

987x smaller memory & 7.12x smaller compute 
compared to FullTrain 

1.96x smaller memory & 1.65x smaller compute 
compared to SOTA

TinyTrain achieves 7.5-11.2x lower latency & 2.8-4.2x lower energy consump(on compared to FullTrain. 

Our Abla5on study suggests i) Offline meta-training increases TinyTrain’s accuracy by 5.6 pp on average; ii) 
Dynamic channel selec(on increases accuracy by 0.8-1.7 pp and 1.9-2.5 pp on average compared to sta5c 
channel selec5on based on L2-Norm and Random, respec5vely.
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Challenges in the targeted extreme-Edge AI training:  

Compute-, Memory-, and Data-Scarcity

*This is carried out efficiently on-device with a single back-propagation per task, avoiding the burdensome search process 
through a few thousand tests of different configurations [1].


