
A Channel Coding Benchmark for Meta-Learning

Rui Li1, Ondrej Bohdal2, Hyeji Kim3, Da Li1, 2, Nicholas D. Lane1, 4, and Timothy Hospedales1, 2

1 Samsung AI Center, Cambridge, UK 2 University of Edinburgh, UK
3 University of Texas at Austin, US 4 University of Cambridge, UK

rui.li@samsung.com, ondrej.bohdal@ed.ac.uk, hyeji.kim@austin.utexas.edu, dali.academic@gmail.com,
ndl32@cam.ac.uk, t.hospedales@ed.ac.uk

Abstract

Meta-learning provides a popular and effective family of
methods for data-efficient learning of new tasks. However,
performance degrades in real-world settings where meta-
learners must learn from a wide and potentially multi-modal
distribution of training tasks; and when distribution shift
exists between meta-train and meta-test task distributions.
These issues are hard for the research community to study
since the shape of task distributions, and shift between them
are not straightforward to measure or control in standard
benchmarks. To this end we consider the channel coding

problem as a benchmark for meta-learning. Channel coding
is a real-world application where task distributions naturally
arise, and fast adaptation to new tasks is practically valuable.
We show how to evaluate the variability of meta-learner per-
formance with task distribution breadth and shift, which can
be controlled in a coding benchmark, thus providing a tool
for the community to drive research on practically robust and
effective meta-learning methods going forward.

1 Introduction
Meta-learning, or learning-to-learn, aims to provide data-
efficient learning of new tasks by training improved learn-
ing algorithms using a distribution over tasks. The promise
of such data efficient learning has long inspired research
(Thrun and Pratt 1998; Schmidhuber, Zhao, and Wiering
1996), and recently grown into a thriving research area in
which rapid progress is being made (Finn, Abbeel, and
Levine 2017; Zintgraf et al. 2019; Flennerhag et al. 2020;
Hospedales et al. 2020). While performance has improved
steadily, particularly on simple image recognition bench-
marks, several fundamental outstanding challenges have
been identified (Baz et al. 2021; Hospedales et al. 2020).
In particular, state of the art meta-learners have been shown
to suffer in realistic settings (Yu et al. 2019; Triantafillou
et al. 2020) when required to generalize across a diverse
rather than artificially narrow range of tasks – i.e. the task
distribution is broad and multi modal; and when there is dis-
tribution shift between the (meta)training and (meta)testing
tasks. These conditions are almost inevitable in real-world
applications where, for example, robots should generalize

Copyright c� 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to across the range of manipulation tasks of interest to hu-
mans (Yu et al. 2019), and image recognition systems should
cover a realistically wide range of image types (Triantafillou
et al. 2020). However, systematic study of these issues is
hampered because conventional benchmarks do not provide
a way to quantitatively measure or control the complexity or
similarity of task distributions: Does an image recognition
benchmark covering birds and airplanes provide a more or
less complex task distribution to meta-learn than one cov-
ering flowers and vehicles? Is there greater task-shift if a
robot trained to pick up objects must adapt to opening a
drawer or throwing a ball? In this paper, we contribute to the
future study of these issues by introducing a channel cod-

ing meta-learning benchmark, which enables finer control
of task-distribution complexity and shift for study.

Channel coding is a classic problem in communications
theory of how to encode/decode data to be transmitted over a
capacity limited noisy channel so as to maximise the fidelity
of the received transmission. While there is extensive theory
on optimal codes for analytically tractable (e.g., Gaussian)
channels, recent work has shown that codecs obtained by
deep learning provide clearly superior performance on more
complex realistic channels (Kim et al. 2018b,a). In this pa-
per, we focus on learning the decoder for a fixed encoder1.
Best deep channel coding however is achieved by training
codecs tuned to the noise properties of a given channel.
Thus, a highly practical meta-learning problem arises: Meta-
learning a channel code learner on a distribution of training
channels, which can rapidly adapt to the characteristics of a
new channel. By way of example, the goal of meta-learning
is now to enable the codec of a user’s mobile wireless de-
vice to rapidly adapt its coding algorithm for best reception
as she traverses different environments or switches on/off
other sources of interference.

In this paper we introduce channel coding problems (Kim
et al. 2018a,b) as tasks to study the impact of task distri-
butions on contemporary meta-learners, as a complement to
existing conventional meta-learning benchmarks (Yu et al.
2019; Triantafillou et al. 2020). We introduce benchmarks to
study the dependence of meta-learning performance on the

1This is the practically relevant setting as communications stan-
dards defining the encoding protocol are not easy to change, but
decoders can be upgraded without changing the standard.

1

Figure 1: An illustration of the channel coding problem. We learn a channel decoder for a fixed encoder under various channel models.

width and complexity of training task distributions, as well
as the degree of meta-train/meta-test task distribution shift.
Furthermore, as these problems are relatively fast to train,
while being of configurable difficulty (unlike other saturated
starter benchmarks such as omniglot), we hope that this will
provide a valuable prototyping tool for the meta-learning re-
search community going forward.

2 Methods
2.1 Channel Coding Background
Channel coding is one of the key elements in a communi-
cation system, the role of which is to introduce controlled
redundancy so that the receiver can reliably and efficiently
recover the message from a corrupted received signal.

A typical channel coding system consists of an encoder
and a decoder, as illustrated in Fig. 1. In this example a rate
1/2 channel encoder maps K message bits b 2 {0, 1}K
to a length-2K transmitted signal c 2 {�1, 1}2K . In a
more general setting a rate 1/r encoder maps b 2 {0, 1}K
to c 2 {±1}rK . Given the transmitted signal, a channel
p(y|c) models the noise effect experienced by the signal
in the communication medium based on mathematically ex-
pressed conditional distributions and outputs a noisy signal
y 2 R2K . The decoder will in turn take the noisy signal
as input and output estimations of the original message, i.e.
b̂ = f✓(y) 2 {0, 1}K . The reliability an encoder and de-
coder pair is measured by the probability of error, namely,
Bit Error Rate (BER) defined as P(b̂k 6= bk). We treat the
decoding problem as a K-dimensional binary classification
task for each of the ground-truth message bits bk.
Neural decoder for convolutional codes We focus on
learning a decoder for a fixed rate 1/2 convolutional encoder,
as illustrated in Fig. 7 in the Appendix A. We are inter-
ested in this setting for two reasons. Firstly, the sequential
nature of the convolutional encoding naturally aligns with
convolutional neural networks. Secondly, efficient optimal
decoders (e.g. Viterbi and BCJR algorithms) are known for
a special class of channels, i.e. additive white Guassian noise
(AWGN) channels. Practically, reliable and efficient de-
coders form an essential part of almost all kinds of commu-
nication systems, from wireline to wireless communications
including both Wi-Fi and cellular. There has been significant
interest in applying deep learning for channel decoding (and
coding itself) (O’Shea and Hoydis 2017).
Adaptive neural decoder The channel p(y|c) can vary
over time, and is unknown to the decoder. To help the de-
coder estimate the channel, pilot signals that are known mes-
sages bknown to the decoder are sent before the transmission
begins, so that the decoder can extract channel information
from y and bknown. When modeling the decoder as a neu-
ral network instead of an analytical algorithm, the common

practice is, for any given channel, to train the decoder using
pilot signals (y,bknown) as ground-truths and their corre-
sponding noisy received values as inputs. The optimization
goal is to minimize a loss L, which is typically in form of
binary cross-entropy, with respect to decoder as f✓

✓⇤ = argmin✓ Ebknown,yL(bknown, f✓(y)) (1)

To ensure good performance as channel characteristics
p(y|c) change due to e.g. weather or moving users, which
always happen in realistic communications, adapting neu-
ral decoder f✓ to the evolving channel is necessary. Meta-
learning is therefore a particularly promising tool to enable
rapid decoder adaptation with few pilot codes, as confirmed
by early evidence (Jiang et al. 2019). Conversely, channel
coding provides a lightweight benchmark playground for
contemporary meta-learners, allowing control of the task
complexity and distribution-shift, thanks to the mathemat-
ical representability and tractability of channel models.

2.2 Meta-Learning
Meta-learning usually considers distributions over tasks for
training and testing ptr(T) and pte(T). Each task Ti is asso-
ciated with a dataset Di = {xj

i ,y
j
i }Jj=1, which we split into

Di = Dtr
i [Dval

i . We are interested in learning models f✓ of
the form ŷ = f✓(x) using some algorithm A that minimizes
a loss function L(✓, D) on data D with respect to parameters
✓. The algorithm itself is paramaterized by meta-parameter
�, i.e., ✓⇤ = A(D,L,�). The goal of meta-learning is to
find the parameters � of algorithm A that leads to strong
validation performance after learning.

�⇤ = argminE T ⇠p(T)
(Dtr,Dval)2T

L(A(Dtr,L,�), Dval) (2)

When datasets Dtr are small, this leads to meta-optimization
for a data-efficient learner, as pioneered by MAML (Finn,
Abbeel, and Levine 2017), which choses meta-parameter �
as the initial condition of the optimization for ✓ by A. Once
meta-learning is complete, we can draw a new task T 0 ⇠
pte(T), and solve it efficiently as

✓⇤ = A(D0,L,�⇤) (3)

2.3 Coding benchmark for meta-learning
Constructing Task Distributions We consider four com-
mon families (also called modalities) of channel models
and corresponding decoding tasks, namely, Additive White
Gaussian Noise (AWGN), Bursty, Memory noise, and Mul-
tipath interference channels as detailed in Appendix B.

To define task distributions, we consider uni-modal and
multi-modal settings. In the single-family, uni-modal case,
a task distribution p corresponds to a specific channel class
as discussed above, paramaterized by a continuous channel

2

parameter ! (e.g., the variance of additive noise or multi-
path strength). The distribution of tasks in this family then
depends on the prior over channel parameter !, p(T) =R
! p(T |!)p(!). We can control the width of a task distri-

bution by varying the width of the, e.g. uniform distributed,
prior p(!). In the multi-family, multi-modal case we can de-
fine a more complex task distribution as a mixture over mul-
tiple channel types pk, each with its own distribution over
channel parameters !, p(T) =

P
k

R
! ⇡kpk(T |!)pk(!).

Quantifying task distribution shift and breadth We
quantify the train-test task shift distance (Definition 1) and
diversity (Definition 2) of each task, based on information
theoretic measures. In a coding benchmark, we can control
these scores by choosing appropriate set of channel models,
which allows us to evaluate the variability of meta-learning
with the task distribution breadth and shift. We demonstrate
such examples in Section 3 (Fig. 3, 6).

Definition 1 (Train-Test Task-Shift S(pa(T), pb(T)))
Simply measuring the shift between training and testing
task distributions has previously been an open problem in
meta-learning. However this becomes feasible to define
for the channel coding problem. We quantify the distance
of a test distribution pa(T) from a training distribution
pb(T) using the Kullback–Leibler divergence (KLD) a.k.a.
the relative entropy (Kullback and Leibler 1951). The
KLD-based shift distance score is defined as:

S(pa(T), pb(T)) := Ec[DKL(pa(ya|c)||pb(yb|c))],

where pa(ya|c) and pb(yb|c) denote the channels associated
with Ta and Tb, respectively. The distance is large if a testing
distribution pa introduces a very different distribution over
received messages y for a given code c compared to training
pb, and zero if they induce the same distribution.

Definition 2 (Diversity Score D(T)) The diversity score
of a task distribution p(T) is defined as mutual information
between the channel parameter ! and the received signal y:

D(T) = Ec[I(!;y|c)],

where ! denotes the channel parameter (latent variable)
for the task distribution, i.e., p(y|c) =

R
! p(y|c,!)p!(!).

We will see that this metric will quantify amenability to
meta-learning. Intuitively, decoding can benefit from meta-
learning when knowing the task (channel parameter) con-
veys more information about the messages y.

Estimation of scores In order to estimate shift-distance
and diversity scores, we generate samples according
to the corresponding channel distributions and use
Kraskov-Stögbauer-Grassberger (KSG) estimator (Kraskov,
Stögbauer, and Grassberger 2004), the k-nearest neigh-
bor based estimator for entropy and mutual informa-
tion (Kraskov, Stögbauer, and Grassberger 2004; Steeg
2014) to compute each of these scores given the samples.

Discussion While we denote each channel to learn as a
‘task’, we note that in our scenario each task shares the same
encoding and label-space of messages to recognize. As such
our goal could also be understood as few-shot supervised
domain adaptation by meta-learning. Thus we will consider

the simple domain generalisation baseline of conventionally
learning a decoder on all data from ptr(·) and applying it
directly to tasks in pte(·) without adaptation.

3 Experiments
We first evaluate the impact of training distribution diversity
on meta-learning performance, followed by that of train-test
task distribution shift. Before analysing the results, we intro-
duce the details of our experiments.
Dataset and Task Design We consider a wide range of
channel scenarios that are described in Appendix C. To facil-
itate evaluation, we create a dataset of codewords and mul-
tiple transmitted messages under each channel model. For
each of the benchmark scenarios, we have created a dataset
with 200 randomly sampled noise setups, from the noise
family specific to the scenario. Each noise setup has 50 ran-
domly generated true codes (“classes”) with 50 examples
(noisy received messages) for each type. When generating a
meta-training task, we randomly sample a noise set-up and
then randomly sample N codes with K support examples
and L target or query examples. This makes the tasks simi-
lar to the standard N -way K-shot problems, but instead of a
classification problem, we solve a fast-adaptation problem.
For meta-testing, we have another dataset with 50 manu-
ally specified noise setups and randomly generated 50 codes
with 50 examples each. The meta-testing dataset is shared
across various scenarios. Meta-testing tasks are generated in
the same way as meta-training tasks. All of the datasets are
small enough to easily fit into the GPU memory, allowing
fast experimentation.
Meta-Learning Algorithms We have evaluated a vari-
ety of meta-learning approaches, both popular ones such as
MAML and Reptile, but also state-of-the-art ones such as
MetaCurvature or KFO. We have used the implementations
provided by learn2learn library (Arnold et al. 2020). In par-
ticular, we compare the following algorithms:

1. Vanilla does not use meta-learning and directly trains a
conventional model on the union of meta-training tasks. It
can be considered as the domain generalization baseline
for our benchmark, where simply aggregating all source
data is a strong baseline (Li et al. 2017a).

2. MAML (Finn, Abbeel, and Levine 2017) is a meta-
learner that aims to learn an initial condition for few-shot
optimisation by backpropagating through a few steps of
gradient descent, exploiting higher-order gradients.

3. MAML FO is the First-Order approximation to MAML
introduced in Finn, Abbeel, and Levine (2017), which
saves computation by avoiding higher order gradients.

4. Reptile (Nichol, Achiam, and Schulman 2018) is an ef-
ficient first-order alternative to MAML that is based on
moving the initial weights towards the weights obtained
after fine-tuning on a task. On some problems it is able to
match MAML performance.

5. ANIL (Almost No Inner Loop, (Raghu et al. 2020)) is
a simplification of MAML where only the task-specific
network head (classifier) is included in the inner-loop up-
dates. If ANIL performs similarly well as MAML, it sug-

3

Figure 2: Meta-testing on AWGN, Bursty, Memory and Multipath task families (subplots). Y-axis is Bit Error Rate (BER, lower is better).
Bars indicate meta-test standard-deviations. Left of the dashed line: Within-family setting compares uni-modal training distributions focused
or widely distributed around the testing distribution. Right of the dashed line: Across-family setting where the training distributions is a
mixture of all four task families.

gests that feature-reuse is the dominant factor, rather than
rapid-tuning from the meta-learned initialization.

6. MetaSGD (Li et al. 2017b) is an extended version of
MAML where the meta-learner learns to update the di-
rection as well as the learning rate for each parameter to-
gether with the initialization of the neural network.

7. KFO (Meta Kronecker Factorized Optimizer, Arnold,
Iqbal, and Shal (2019)) uses Kronecker factorization
to transform the gradients and obtain more expressive
and non-linear meta-optimizers. This transformation has
helped improve the performance of MAML on various
computer vision benchmarks.

8. MetaCurvature (Park and Oliva 2019) builds on MAML
and learns a curvature matrix together with initial param-
eters of the model. MetaCurvature has been shown to out-
perform MAML and MetaSGD in generalization.
Note that our channel-coding problem is well-suited for

gradient-based meta-optimizers. In contrast, it would be dif-
ficult to use metric-based approaches such as Prototypical
Nets (Snell, Swersky, and Zemel 2017) or Relation Nets
(Sung et al. 2018) because we do not solve a new classi-
fication problem where we could create a class prototype to
which we would compare query examples. Instead, we focus
on the problem of rapid adaptation to a new type of channel.
Hyperparameters and Architecture All approaches
used the same hyperparameters and architecture for consis-
tency. We used Adam optimizer with a meta-learning rate
of 0.001 for the outer-loop, SGD with fine-tuning learn-
ing rate of 0.1 for the inner-loop consisting of 5 adaptation
steps, 10 tasks in a meta-batch and 50000 meta-training iter-
ations. Each task consisted of 5 different adaptation types
(“classes”), with 5 support and 15 target examples. The
ground truth messages are 10 bits long, encoded by the 1/2
rate convolutional encoder. Hence the message input to the
decoder has shape 1⇥10⇥2. We fix the decoder architecture
as a CNN with 4 layers, 64 filters, kernel size 3, and stride
2. The CNN is followed by a linear fully-connected layer of
size 64⇥ 10.

3.1 Impact of Training Distribution Diversity on
Meta-Learning Performance

In this first section we investigate how meta-learners cope
with task distributions of varying breadth and complexity,
since previous studies have suggested that capacity could be

a limiting factor of existing meta-learners (Yu et al. 2019;
Rusu et al. 2019). We would like meta-learners to be capa-
ble of learning from a broad range of auxiliary tasks, without
requiring the auxiliary task distribution to be carefully con-
structed in advance for similarity to each given target task.
Setup In these experiments, we fix the meta-testing task
distribution pte(T) to ensure comparability, and then eval-
uate performance when the training distribution ptr(T) is
focused around the testing condition ‘focused’ vs when it
is spread more broadly around the testing distribution ‘ex-

panded’. To expand the training distribution in the single-
family/uni-modal case, we use a wider prior on the channel
parameter pexpandtr (!) = Unif(a � �, b + �) vs pte(!) =
Unif(a, b) when constructing task distributions as discussed
in Section 2.3. In the multi-modal case, we use a single chan-
nel family for pte and a multi-modal mixture of families for
ptr composed of all the channel models introduced in Sec-
tion 2.3 including the testing distribution pte.
Results Fig. 2 summarizes the results for meta-learning on
training distributions of varying widths for both uni-modal
(left or red line) and multi-modal (right of red line) con-
ditions, and for different target channels (subplots). From
the results, see we can that: (i) All meta-learners surpass the
vanilla baseline in every case, confirming the value of meta-
learning based adaptation to channel type. (ii) Among the
meta-learners, Reptile is worst; MAML, FO-MAML, KFO
and ANIL perform similarly in the middle; and MetaSGD
and MetaCurvature perform best indicating the value of
learning not just initial condition but update direction. (iii)
In the within-family case (left group), focusing the meta-
training distribution on the meta-testing condition (x-axis:
focused) vs a diverse meta-training regime (x-axis: ex-
panded) does not visibly meta-testing performance on our
log-performance scale. In the across-family case (right, x-
axis: mixed), transferring from a multi-modal training dis-
tribution to a specific testing distribution incurs a small but
visible difference to performance. This suggests that meta-
learner capacity for fitting a multi-modal training distribu-
tion does impact performance (Vuorio et al. 2019), albeit in
a minor way.

To further understand these results we compute the
breadth of each training regime as measured by its diver-

sity (Section 2.3). Note that we can measure the diversity
of both focused/expanded (uni-modal) and mixed (multi-
modal) training regimes with the same metric. As expected,

4

Figure 3: Connection between task distribution diversity score and
benefit of meta-learning for the best and worst meta-learners, i.e.
MetaCurvature and Reptile. Symbols: Different target channels. X-
axis: Diversity scores of the channel; Y-axis: accuracy gain over
vanilla. Results are grouped by circles on a per-learner (dashed cir-
cle for MetaCurvature and solid circle for Reptile) and per-train
regime basis (Focused on the left and Mixed on the right).

the mixed regimes lead to higher diversity. Fig. 3 plots the
margin between example meta-learners and the vanilla non-
adaptive baseline against the diversity score of the channel.
We can see that the benefit provided by meta-learning in-

creases with more diverse training regimes. Intuitively, the
more the channel configuration parameters determine the
output message distribution, the more potential benefit there
is from meta-learning how to adapt to a given channel.

3.2 Impact of Train-Test Distribution Shift on
Meta-Learning Performance

In this section, we study how each of the baseline learners’
performance depends on distribution shift between training
ptr(T) and testing pte(T) task distributions.
Within-Family Setup We first consider the uni-modal
within task family case, where we create distribution shift
by setting ptr(!) 6= pte(!). Specifically, we define two
task distributions using two different non-overlapping uni-
form priors on ! corresponding to different channel SNRs
in the Bursty channel. We then train our meta-learners on
each, and evaluate them on a range of task parameters ! that
are both in- and out-of-domain with respect to the training
distribution.
Results Fig. 4 shows the results of generalizing across
a range of meta-testing tasks (x-axis), for models learned
within the each of the two specified training domains. Note
that the ‘difficulty’ of the shown testing tasks is non-uniform
i.e. higher SNR tasks are easier. This means that other things
being equal we expect worse performance toward the left of
the graphs; and that the models trained on the ‘Low” SNR
range (blue) and models trained on the ‘High’ SNR range
(orange) have been exposed to the hardest/easiest training
regime respectively.

From the plots we can see that: (i) Overall MetaCurvature
is best, followed by MAML, Reptile and Vanilla. (ii) The
meta-learners’ performance is clearly better when operating
within-domain than when operating with train-test distribu-

tion shift, indicated by the crossing of the lines correspond-
ing to the two training conditions. (iii) However, consider-
ing the stronger MetaCurvature, even when it is evaluated in
task-shift condition (orange line in low-SNR regime on the
left; blue line in high-SNR regime on the right), it is better
than the non-meta learned Vanilla decoder.
Across-Family Setup We next consider the across-family
setting. In this case we create task distributions defined by
each channel type and use them for meta-training. We then
consider several channel types for meta-testing and evaluate
pairs of matched and mis-matched train/test regimes.
Results From the results in Fig. 5, we can see that: (i)
Meta-learning is generally most successful in the within-
family. IE: When source channel on the x-axis matches the
target channel of the sub-plot, as indicated by the dashed
box. (ii) Some across-channel family conditions also per-
form quite well, such as Multipath ! Bursty; but not oth-
ers, such as Bursty ! AWGN. (iii) However, some specific
channel families such as Bursty cannot be succesfully ad-
dressed when transferring from any other cross-family train-
ing distribution.
Summary We have seen in the previous two experiments
that meta-learning performance is best when pte = ptr,
with performance degrading smoothly when there is small
deviation between them (Fig. 4), and sometimes dropping
significantly when they are entirely different task families
(Fig. 5). A key feature of channel coding as a meta-learning
benchmark is the ability to measure the distance between
task distributions in a systematic manner, as explained in
Section 2.3. We can thus aggregate our results across experi-
ments and plot normalized BER against meta-train meta-test
task distribution distance as shown in Fig. 6. Here, each dot
on the scatter plot is an experiment, and we fit lines for each
model to show how different meta-learners respond to in-
creasingly different train-test task distributions. Going for-
ward, the evaluation shown in Fig. 6 can provide a metric
to benchmark the robustness of meta-learners to train-test
distribution shift, and can be used as an overall robustness
metric to complement the standard approach of evaluating
within-task-distribution performance.

4 Discussion
We set out to study the significance of training task-
distribution complexity and train-test task distribution shift
on meta-learning. Overall we saw only a mild degradation
in performance under complex task distributions compared
to simple task distributions (Figure 2). In contrast to prior
work (Vuorio et al. 2019; Yu et al. 2019), this suggests that
meta-underfitting, or lack of meta-learner capacity is not a
major bottleneck in this application. This may also be due to
our setting requiring fast adaptation to new domains rather
than new tasks. However, our analysis does show that perfor-
mance degrades as train-test distribution shift increases, both
within and across task-family (Figures 4-5). Since these dis-
tributions can almost certainly never be perfectly aligned in
real applications (Yu et al. 2019; Triantafillou et al. 2020), it
is important to develop meta-learners that are robust to such
distribution shift. Our ability to measure performance under

5

Figure 4: Impact of train-test distribution shift on decoding performance, within-family condition. X-axis: Meta-testing distribution parame-
ter. Lines: Meta-training regime. “Low” training regime corresponds to lower SNR sampled from range (-2.5,3.5) and SNR-B from (-23, -17)
for Bursty channel, and “High” training regime corresponds to SNR and SNR-B sampled from (8.5,13.5) and (-11, -5), respectively. Meta-
learners (MAML, MetaCurvature) are better than a non-adaptive learned decoder (vanilla). Their performance degrades relatively smoothly
as decoders are evaluated in increasingly out-of-domain conditions.

Figure 5: Impact of train-test distribution shift on decoding performance, across-family condition. Each sub-plot shows results of meta-testing
on one of the AWGN, Bursty, Memory, Multipath task families, after learning on different meta-training channels (lines). Lines correspond to
meta-test standard deviations of each algorithm. Boxes indicate when meta-training and meta-testing task families align, i.e., the within-family
condition. Overall meta-learning works reliably within-task distribution (boxes), and occasionally across task distribution.

different degrees of distribution shift provides an excellent
metric to drive this research in future.

A second contribution of this work is the introduction of
quantifiable metrics for the diversity of a task distribution,
and the distance between training and testing task distribu-
tions. Our synthesis of results showed that task distributions
with greater diversity can benefit more from meta-learning
(Figure 3), and that while absolute performance drops with
train-test task distribution distance, the benefit provided by
meta-learning over the non-meta baseline can actually in-
crease (Figure 6).
Future Work In future, we will investigate the application
of these task distribution metrics to standard meta-learning
benchmarks such as image recognition. We have left for fu-
ture work evaluating the impact of the number of unique
meta-training tasks on meta-learning performance, but this
is straightforward to explore within our framework. In the
current evaluation we only considered gradient-based meta-
learners, however feed-forward meta-learners could also be
applied to channel coding and evaluated in the same frame-
work. In our evaluation, we considered a single instance of
adaptation to new tasks, however in real applications with
moving users the channel becomes a continuously varying
environment. Thus coding could also serve as a system-
atic benchmark for continuous meta-learning (Al-Shedivat
et al. 2018), which has thus far suffered from lack of a
simple and standardized benchmark. Meta-learning specif-
ically in support of direct cross-domain robustness is also a
topical branch of meta-learning (Balaji, Sankaranarayanan,
and Chellappa 2018), and such methods can be that can be

mapped directly onto our benchmark for evaluation as im-
provements to the “Vanilla” baseline in the case where no
adaptation is allowed on target channels.

5 Conclusion
We presented a new meta-learning benchmark based on
channel coding, a real-world and practically important prob-
lem that lends itself to meta-learning. We used it to evaluate
the ability of state of the art meta-learners to learn com-
plex task distributions without underfitting, and their abil-
ity to generalize across meta-train/test task distribution shift
both within and across task families. Overall, we believe this
benchmark setup will prove fruitful to help the community
study these issues going forward.

References
Al-Shedivat, M.; Bansal, T.; Burda, Y.; Sutskever, I.; Mor-
datch, I.; and Abbeel, P. 2018. Continuous Adaptation via
Meta-Learning in Nonstationary and Competitive Environ-
ments. ICLR .

Arnold, S. M.; Iqbal, S.; and Shal, F. 2019. When MAML
Can Adapt Fast and How to Assist When It Cannot. arXiv

preprint arXiv:1910.13603 .

Arnold, S. M. R.; Mahajan, P.; Datta, D.; Bunner, I.; and
Zarkias, K. S. 2020. learn2learn: A Library for Meta-
Learning Research URL http://arxiv.org/abs/2008.12284.

Balaji, Y.; Sankaranarayanan, S.; and Chellappa, R. 2018.

6

Figure 6: Impact of train-test task distribution distance on accuracy for (left) MAML, (middle) Reptile, and (right) MetaCurvature. X-axis
denotes the KLD distance score between train and test distributions, and Y-axis denotes accuracy gain over vanilla. Each dot on the scatter plot
corresponds to an experiment in Figure 2 (⇤, shift from mixed channels), Figure 4 (+, shift within family) and Figure 5 (o, shift across-family).

MetaReg: Towards Domain Generalization using Meta-
Regularization. In NIPS.
Baz, A. E.; Guyon, I.; Liu, Z.; van Rijn, J. N.; Treguer,
S.; and Vanschoren, J. 2021. AAAI Workshop on Meta-
Learning. URL https://metalearning.chalearn.org.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-learning for Fast Adaptation of Deep Networks. In
ICML.
Flennerhag, S.; Rusu, A. A.; Pascanu, R.; Visin, F.; Yin, H.;
and Hadsell, R. 2020. Meta-Learning with Warped Gradient
Descent. In ICLR.
Hospedales, T.; Antoniou, A.; Micaelli, P.; and Storkey, A.
2020. Meta-Learning in Neural Networks: A Survey.
Jiang, Y.; Kim, H.; Asnani, H.; and Kannan, S. 2019. Mind:
Model independent neural decoder. In 2019 IEEE 20th

International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), 1–5. IEEE.
Kim, H.; Jiang, Y.; Kannan, S.; Oh, S.; and Viswanath, P.
2018a. Deepcode: Feedback Codes via Deep Learning.
NIPS .
Kim, H.; Jiang, Y.; Rana, R.; Kannan, S.; Oh, S.; and
Viswanath, P. 2018b. Communication algorithms via deep
learning. ICLR .
Kraskov, A.; Stögbauer, H.; and Grassberger, P. 2004. Esti-
mating mutual information. Phys. Rev. E 69: 066138.
Kullback, S.; and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics 22(1): 79–
86.
Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. M. 2017a.
Deeper, Broader and Artier Domain Generalization. In
ICCV.
Li, Z.; Zhou, F.; Chen, F.; and Li, H. 2017b. Meta-sgd:
Learning to learn quickly for few-shot learning. arXiv

preprint arXiv:1707.09835 .
Nichol, A.; Achiam, J.; and Schulman, J. 2018. On First-
Order Meta-Learning Algorithms. In arXiv.
O’Shea, T.; and Hoydis, J. 2017. An Introduction to Deep
Learning for the Physical Layer. IEEE Transactions on

Cognitive Communications and Networking 3(4): 563–575.
ISSN 2372-2045. doi:10.1109/TCCN.2017.2758370.
Park, E.; and Oliva, J. B. 2019. Meta-curvature. In Advances

in Neural Information Processing Systems, 3314–3324.
Raghu, A.; Raghu, M.; Bengio, S.; and Vinyals, O. 2020.
Rapid learning or feature reuse? towards understanding the
effectiveness of maml. In arXiv.
Rusu, A. A.; Rao, D.; Sygnowski, J.; Vinyals, O.; Pascanu,
R.; Osindero, S.; and Hadsell, R. 2019. Meta-Learning with
Latent Embedding Optimization. ICLR .
Schmidhuber, J.; Zhao, J.; and Wiering, M. 1996. Simple
principles of metalearning. Technical report IDSIA 69: 1–
23.
Snell, J.; Swersky, K.; and Zemel, R. S. 2017. Prototypical
Networks for Few-shot Learning. In NIPS.
Steeg, G. V. 2014. Non-parametric Entropy Estimation Tool-
box (NPEET) URL http://github.com/gregversteeg/NPEET.
Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H.; and
Hospedales, T. M. 2018. Learning to Compare: Relation
Network for Few-Shot Learning. In CVPR.
Thrun, S.; and Pratt, L., eds. 1998. Learning to Learn.
Kluwer Academic Publishers.
Triantafillou, E.; Zhu, T.; Dumoulin, V.; Lamblin, P.; Evci,
U.; Xu, K.; Goroshin, R.; Gelada, C.; Swersky, K.; Man-
zagol, P.-A.; and Larochelle, H. 2020. Meta-Dataset: A
Dataset of Datasets for Learning to Learn from Few Exam-
ples. In ICLR.
Vuorio, R.; Sun, S.-H.; Hu, H.; and Lim, J. J. 2019. Mul-
timodal Model-Agnostic Meta-Learning via Task-Aware
Modulation. In NeurIPS.
Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2019. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning.
In CORL.
Zintgraf, L.; Shiarli, K.; Kurin, V.; Hofmann, K.; and White-
son, S. 2019. Fast Context Adaptation via Meta-Learning.
In ICML.

7

