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Abstract—Advances in network programmability enable op-
erators to ‘slice’ the physical infrastructure into independent
logical networks. By this approach, each network slice aims
to accommodate the demands of increasingly diverse services.
However, precise allocation of resources to slices across future
5G millimetre-wave backhaul networks, to optimise the total
network utility, is challenging. This is because the performance
of different services often depends on conflicting requirements,
including bandwidth, sensitivity to delay, or the monetary
value of the traffic incurred. In this paper, we put forward a
general rate utility framework for slicing mm-wave backhaul
links, encompassing all known types of service utilities, i.e.
logarithmic, sigmoid, polynomial, and linear. We then introduce
DELMU, a deep learning solution that tackles the complexity of
optimising non-convex objective functions built upon arbitrary
combinations of such utilities. Specifically, by employing a stack
of convolutional blocks, DELMU can learn correlations between
traffic demands and achievable optimal rate assignments. We
further regulate the inferences made by the neural network
through a simple ‘sanity check’ routine, which guarantees both
flow rate admissibility within the network’s capacity region and
minimum service levels. The proposed method can be trained
within minutes, following which it computes rate allocations that
match those obtained with state-of-the-art global optimisation
algorithms, yet orders of magnitude faster. This confirms the
applicability of DELMU to highly dynamic traffic regimes and
we demonstrate up to 62% network utility gains over a baseline
greedy approach.

I. INTRODUCTION

The 5" generation mobile networks (5G) embrace a new
wave of applications with distinct performance require-
ments [1]. For example, ultra-high definition video stream-
ing and immersive applications (AR/VR) typically demand
very high data throughput. Autonomous vehicles and remote
medical care are stringently delay-sensitive, belonging to a
new class of Ultra-Reliable Low-Latency Communications
(URLCC) services [2]. In contrast, Internet of Things (IoT)
applications, including smart metering and precision agricul-
ture, can be satisfied with a best-effort service. In order to
simultaneously meet such diverse performance requirements,
while enabling new verticals, mobile network architectures
are adopting a virtually sliced paradigm [3]. The core idea of
slicing is to partition physical network infrastructure into a
number of logically isolated networks, i.e. slices. Each slice
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Fig. 1: Example of sliced backhaul over physical lamppost based
mm-wave infrastructure. Slice 1 accommodates video streaming
flows with sigmoid utilities and Slice 2 carries traffic from IoT
applications, which have logarithmic utility.

corresponds to a specific service type, which may potentially
belong to a certain tenant operator.

At the same time, cellular and Wi-Fi base stations (BSs)
are deployed massively, in order to increase network capacity
and signal coverage. Millimetre wave (mm-wave) technol-
ogy is becoming a tangible backhauling solution to connect
these BSs to the Internet in a wireless fashion at multi-
Gbps speeds [4]. In particular, advances in narrow beam-
forming and multiple-input multiple-output (MIMO) commu-
nications mitigate the severe signal attenuation characteristic
to mm-wave frequencies and respectively multiply achievable
link capacities [5].

Partitioning sliced mm-wave backhauls, and in general
backhauls that employ any other communications technology,
among traffic with different requirements, as in the example
shown in Fig. 1, is essential for mobile infrastructure providers
(MIPs). By and large, MIPs aim to extract as much value as
possible from network resources, yet achieving this in sliced
backhauls is not straightforward. In this example, five BSs
are inter-connected via mm-wave directional links, forming a
shared backhaul. The notion of rate utility is widely used to
quantify the worth of an allocation of resources to multiple
flows. The question is: what type of utility is suitable to such
multi-service scenarios? Logarithmic utility as proposed in [6]
has been adopted for elastic services and remains suitable
for best-effort IoT traffic. On the other hand, applications
such as video streaming typically throttle below a threshold,
whilst an increase in service level is mostly imperceptible by
users when the allocated rate grows beyond that threshold.
Hence, the utility of such traffic can be modelled as a step-
like sigmoid [7]. Had there been real-time applications to
accommodate, their utility is typically formulated through



polynomial functions [8], [9]. Further, in the case of traffic for
which the MIP allocates resources solely based on monetary
considerations, a linear utility function can be employed.
However, as the application scenarios diversify, a single type
of utility cannot capture the distinct features of different
service types. Therefore, we argue that a mixed utility must
be considered. Unfortunately, combining all these utility func-
tions may lead to non-concave expressions and computing
in a timely manner the optimal rate allocation that max-
imises their value becomes a challenging task. Global search
metaheuristics explore the feasible solution space intelligently
to find global maxima [10], yet often involve unacceptably
long computational times. Thus they fail to meet 5G specific
delay requirements in highly dynamic environments, where
application demands change frequently. Greedy approaches
can be used to overcome the runtime burden, though these
will likely settle on sub-optimal solutions.

Contributions: In this paper, we first put forward a gen-
eral utility framework for sliced backhaul networks, which
incorporates all known utility functions. We show that finding
solutions to the network utility maximisation (NUM) problem
when arbitrarily combining different utility functions is NP-
hard. Inspired by recent advances in deep learning, we tackle
complexity by proposing DELMU, a deep neural network
model that learns the relations between traffic demands and
optimal flow rate allocations. Augmented with a simple post-
processing algorithm that ensures minimum service levels
and admissibility within the network’s capacity, we show
that DELMU makes close-to-optimal inferences while con-
suming substantially shorter time as compared to state-of-
the-art global search and a baseline greedy algorithm. In
view of the current technological trends, we particularly focus
on backhauls that operate in mm-wave bands. However, our
utility framework and deep learning approach can be applied
to other systems that operate in microwave or sub-gigahertz
bands.

The remainder of the paper is structured as follows. In
Sec. II we discuss the system model and in Sec. III we
formulate the general NUM problem in the context of sliced
mm-wave backhauls. We present the proposed deep learning
approach to solving NUM in Sec. IV and show its perfor-
mance in Sec. V. We review relevant related work in Sec. VI.
Finally, in Sec. VII we conclude the paper.

II. SYSTEM MODEL

We consider a backhaul network deployment with 53 base
stations (BSs) inter-connected via mm-wave links.! Each BS
is equipped with a pair of transceivers, hence is able to
transmit and receive simultaneously, while keeping the foot-
print small to suit dense deployment. To meet carrier-grade
requirements and ensure precise TX/RX beam coordination,
the network operates with a time division multiple access

IAlthough we primarily focus on mm-wave backhauls, due to their
potential to support high-speed and low latency communications, the opti-
misation framework and deep learning solution we present next are generally
applicable to other technology.

(TDMA) scheme. We assume carefully planned deployments
where BSs have a certain elevation, e.g. on lampposts, hence
interference is minimal and blockage events occur rarely.

We focus on settings where the backhaul network is man-
aged by a single MIP and is partitioned into I logical slices
to decouple different services (e.g. as specified in [3]). F
user flows traverse the network and are grouped by traffic
type ¢ corresponding to a specific slice, i.e. ' = Ueq1,... 1y Fi-
The MIP’s goal is to adjust the flow rates according to
corresponding demands, in order to maximise the overall
utility of the backhaul network. Flow demands are defined by
upper and lower bounds. Lower bounds guarantee minimum
flow rates, so as to ensure service availability, whilst upper
bounds eliminate network resources wastage. We assume a
controller (e.g. ‘network slice broker’ [11]) has complete net-
work knowledge, periodically collects measurements of flow
demands from BSs, solves NUM instances, and distributes
the flow rate configurations corresponding to the solutions
obtained.

Link Capacity: To combat the severe path loss experienced
at mm-wave frequencies and boost capacity, BSs employ
multiple input multiple output (MIMO) antenna arrays. We
consider K array elements deployed at each base station for
TX/RX. In backhaul settings, the stations’ locations are fixed
and the channel coherence time is typically long; hence it
is reasonable to assume full knowledge of the channel state
information is available at both transmitter and receiver sides.
Given the channel matrix H,, , from BS m to BS n, the
received signal at BS n can be computed as

Yn = Hm,nxm + Nm n, (1)

where X, is an K-dimensional signal transmitted by BS m,
and y, are the received symbols at BS n. The singular value
decomposition (SVD) of Hyy, , is:

Hpyn=U,SVE 2)

where U,, and V,, are K x K unitary matrices, i.e. UHUE =
Tand V,, VEE =1, and ¥ is an K x K non-negative diagonal
matrix containing the singular values of Hy, . The k-th
diagonal entries of X, i.e. oy, represents the k-th channel gain,
and is also the k-th non-negative square root of the eigenvalues
of matrix Hm’ann.

The parallel channel decomposition can be implemented
efficiently for mm-wave systems as follows [12]. The trans-
mitter precoding performs a linear transformation on the input
vector Xy, 1.6. Xm = VmXm, and the received signal y, is
linearly decoded by UY, i.e. §,, = Ully,,. Therefore, the link
capacity ¢, , between base station m and n can be computed
as:

Blog, det(I+ Him nQuHY ), (3)

Cmn 1= max
T7(Qm) < Pmax

where Q,, = VmVﬁll is the transmission covariance matrix,
B is the channel bandwidth, and P, . is the maximum
transmit power. Without loss of generality, we assume that
all BSs have the same maximum transmit power budget.



For a channel known at the transmitter, the optimal capacity
can be achieved by the well-known channel diagonalisation
and the water-filling power allocation method [13]. For all
BS m, by employing the optimal transmit pre-coding matrix
Vi = Xim,n, Where X, ,, denotes the eigenvector matrix of
HIL |« H,, n, the MIMO channel capacity maximisation can
be reformulated as:

K
- /\kp']rcn
Cmn = max B g log [ 1+ — , “4)
€
=1

K
S£0< S P < P, 5)
k=1
k >0,Vk,m (6)
where )\, = 0’%, and €2 denotes the noise power. If the

power allocated on the k-th sub-channel is pﬁl at BS m, then
(5) specifies the total transmit power constraint. The optimal
water-filling power allocation yields p¥, = max{0,u —
€2/A\c}, where p > 0 is the water-filling level such that

S PE, = Puax, Y [13].
III. PROBLEM FORMULATION

Our objective is to find the optimal end-to-end flow rates
that maximise the utility of sliced multi-service mm-wave
backhaul networks. We first introduce a general network
utility framework, based on which we formulate the NUM
problem, showing that in general settings this is NP-hard.

A. Utility Framework

Recall that network utility refers to the value obtained
from exploiting the network, which can be monetary, resource
utilisation, or level of user satisfaction. For any flow f we
consider four possible types of utility functions of flow rate r,
depending on which slice F; that flow belongs to. The utilities
considered are parameterised by «; and (3;, whose values have
practical implications, such as the amount billed by the MIP
for a service. Given an allocated rate r, we distinguish the
following types of services that can be mapped onto slices,
whose utilities we incorporate in our framework:

1) Services for which the MIP aims to maximise solely the
attainable revenue. Denoting F; the set of flows in this
class, their utility is formulated as a linear function [14]:

Unne(r) = aqr + 1, Vf € Fi. @)
We note that U, (r) is both concave and convex.

2) Flows f € F5 generated by applications that require
certain level of quality of service, e.g. video streaming,
and whose corresponding utility is thus formulated as a
sigmoid function [7]:

1
Uielr) = T emaataay

Observe that Ug;,(r) is convex in [0, 32) and concave in
(B2, 0), therefore non-concave over the entire domain.

VieF. (8

3) Delay sensitive flows, f € F3, whose utility is mod-
elled as a polynomial function [8]:
Upiy(r) = az(r’), Vf e Fs, &)

where (3 is in the range (0, 1], for which the above
expression is concave.

4) Best-effort traffic, f € F,, that does not belong in any
of the previous classes, and whose utility is commonly
expressed through a logarithmic function [6]:

Ulog (1) Vfe Fa.

= log(aur + B4), (10)

It is easy to verify that Uy,(r) is also concave.

Our general utility framework encompasses all the four
types of traffic discussed above (which may be parametrised
differently for distinct tenants), therefore we express the
overall utility of the sliced backhaul network as

U .= Z U("“) = Z Ulnr(rl) + Z USig(r2)

feF fi1e€F faEF2
+ ) Upy(rs) + Y Uiog(ra). (11)
f3€F3 fa€Fa

Arbitrary combinations of both concave and non-concave
utility functions may result in non-concave expressions U, as
exemplified in Fig. 2. In this figure, we show the total utility
when combining 4 flows with different utility functions, two
of them sigmoidal and two polynomial, each with different
parameters. We assume the rates of each type of flow increase
in tandem. Observe that even in a simple setting like this
one, the network utility is highly non-concave and finding
the optimal allocation that maximises it is non-trivial. We
next formalise this problem with practical mm-wave capacity
constraints, following which we discuss its complexity.

B. Network Utility Maximisation

Consider a set of flows that follow predefined paths, P}, j €
{1,2,...,J}, to/from the local gateway, where the number of
possible routes in the network is J. We denote f; ; a flow on
slice 4 that traverses path P;, which is allocated a rate 7; ;.
By contract, r; ; shall satisfy §; ; < r; ; < d; j, where §; ; is
the minimum rate that guarantees service availability, and d; ;
is the upper bound beyond which the service quality cannot
be improved. d; ; is no less than d; ; by default. Furthermore,
each path P; consists of a number of mm-wave links, and the
link between BSs m and n is subject to a link capacity ¢y, .
We use 75, € {0,1},s € {T'z, Rz}, to indicate whether
node m transmits or receives data of flows traversing path
P;. The total network utility in (11) can be rewritten as:

I J
Z U(’I’) = ZZ Ui(TZ"j).

fer i=0 j=0

(12)
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Fig. 2: Total utility when combining four flows with different utility
functions; namely, two have sigmoid utility parametrised by as =
0.08, B2 = 15 in the [10 — 30] Mbps range, and respectively as =
0.08, B2 = 40 in the [35 — 50] Mbps range; the other two flows
have polynomial utility with a3 = 0.03651, B3 = 0.9 between
[0 — 10] Mbps, and as = 0.03, 83 = 0.6 in [30 — 50] Mbps. Rates
increased in tandem for each type of flow.

Finding the flow rate allocation vector rj j, Vi, j, that max-
imises this utility requires to periodically solve the following
optimisation problem:

r Jj
maxzz Ui(TZ"j)

i=0 j=0
s.t. 045 <15 < dij, Vi, 5

(13)
(14)

I J
T3
ZZT;mCJ <1,{m,n} € Pj,s € {Tx, Rx}. (15)
i=0 j=0 m,n

In the formulation above, (13) is the overall objective function
and (14) specifies the demand constraints. Each BS can trans-
mit and receive to/from one and only one BS simultaneously,
and the total time allocated at a single node for all flow Tx/Rx
should not exceed 1, which is captured by (15). Here ; ; /¢
denotes the time fraction allocated to flow f; ; on link Iy, 5.

C. Complexity

In what follows we briefly show that the network utility
optimisation problem formulated above, where the objective
function is a linear combination of linear, sigmoid, polyno-
mial, and logarithmic functions, is NP-hard. By Udell and
Boyd [15] any continuous function can be approximated
arbitrarily well by a suitably large linear combination of
sigmoidal functions [15]. Thus > U(r) can be regarded as
a sum of sigmoids and a larger number of other sigmoidal
functions. Following the approach in [15], we can reduce an
integer program

find r
st. Ar < Z; r € {0,1}",
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Fig. 3: Proposed Convolutional Neural Network with 10 hidden
layers, which takes traffic demand and topology index as input, and
infers the optimal flow rate allocations.

to an instance of a sigmoidal program

maxZg(ri) = Zri(ri -1

%

st. Ar< Z; 0<r; <1.

Here g(r;) enforces a penalty on non-integral solutions, i.e.
the solution to the sigmoidal program is O if and only if
there exists an integral solution to Ar = Z. Since the integer
program above is known to be NP-hard [16], the reduced
sigmoid program is also NP-hard, and therefore the NUM
problem we cast in (13)—(15) is also NP-hard.

IV. DELMU: A DEEP LEARNING APPROACH TO NUM

To tackle the complexity of the optimisation problem for-
mulated in the previous section and compute solutions in a
timely manner, we propose DELMU, a deep learning approach
specifically designed for sliced mm-wave backhauls and also
applicable to other technologies. In essence, our proposal
learns correlations between traffic demands and allocated flow
rates, to make inferences about optimal rate assignments.
We show that, with sufficient training data, our deep neural
network finds solutions close to those obtained by global
search, while requiring substantially less runtime.

A. Convolutional Neural Network

We propose to use a Convolutional Neural Network (CNN)
to imitate the behaviour of global search. We train the CNN
by minimising the difference between ground-truth flow rates
allocations (obtained with global search) and those inferred
by the neural network. In general CNNs preform weight
sharing across different feature channels [17]. This signifi-
cantly reduces the number of model parameters as compared
to traditional neural networks, while preserving remarkable
performance. At the same time, our approach aims to work
well with a limited amount of training data, which makes
CNNs particularly suitable for our problem. Therefore, we
design a 12-layer CNN to infer the optimal flow rate and
illustrate its structure in Fig. 3. The choice is motivated by
recent results that confirm neural network architectures with
10 hidden layers, like ours, can be trained relatively fast and
perform excellent hierarchical feature extraction [18].

The minimum and maximum traffic demand, and topology
information are concatenated into a single vector, which will
be subsequently fed to a sequence of convolutional blocks.
Each block consists of a one-dimensional convolutional layer



and a Scaled Exponential Linear Unit (SELU) [19], which
takes the following form:

T x>0

SELU(z) = w { (16)

ne®* —n = <0.

Here w = 1.0507 and n = 1.6733 by default. Employing
SELU functions aims at improving the model representability,
while enabling self-normalisation without requiring external
techniques (e.g. batch normalisation). This enhances the ro-
bustness of the model and eventually yields faster conver-
gence. Features of traffic demands are hierarchically extracted
by convolutional blocks, and they are sent to fully-connected
layers for inference. We train the CNN using a stochastic
gradient descent (SGD) based method named Adam [20], by
minimising the following mean square error:

1 Q I J
Lo = Qg 2o 2 2 0rais i)

q=0i=0 j=0

7)

() denotes the number of training data points, 74; ; denotes
the allocated rate allocated to flow j on slice i, with demand
instance ¢, as suggested by global search. r;’m- is the cor-
responding rate inferred by the neural network. We train the
CNN with 500 epochs, with an initial learning rate of 0.0001.

B. Post-Processing Algorithm

The output of the CNN on its own occasionally violates
the constraints (14) and (15), because the model is only fed
with traffic demands without embedding of constraints. We
address this issue by designing a post-processing algorithm
that adjusts the CNN solutions to fall within feasible domains,
while maintaining minimum utility degradation and very short
computation times. The idea is to first decrease recursively
with a large step-length the rate of flows that breach the
constraints, then increase repeatedly with a smaller step-length
the rate of flows that can achieve the largest utility gains.

Algorithm 1 CNN Post-Processing Algorithm

1: Compute the time between each pair of nodes t7, ,,

2: Compute the utility of each flow u; ; = U;(rs,5)

3: while Any t7, , > 1 do

4: Find the link [, », with the maximum t7, ,

5: deStepLen = min{10,r; ; — d;,;}

6: for Flows satisfying 77, == 1 or 77,, == 1 for l;,,, do
7: Potential utility decrease u; ; = Ui(r,; — deStepLen)
8: end for

9: Find the f; ; with the minimum non-zero Au; j = s j—u; ;
10: Decrease rate of f; ;, i.e. r4,; = r;,; — deStepLen
11: Update t7, ,, and u;,;
12: end while

13: while Any flow rate can be increased do
14: inStepLen = min{1,d; ; — ri;}

15:  Potential utility increase u; ; = U;(rs,; + inStepLen), V f; ;
16:  Find the f;; with the maximum Aw;; = uf; — uq,;
17: Increase rate of f; ;, i.e. r;; = r;; + inStepLen

18: Update t;, ,, and u; ;
19: end while

Algorithm 1 shows the pseudo-code of this procedure.
The routine starts by computing the total time on each link
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Fig. 4: The four network topologies used for evaluation. Circles
represent the BSs, flow paths are shown with lines of different colour,
and link capacities are labelled.
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for all traversing flows, ie. &5, = >3, > 77,1 j/Cmn
(line 1) and the utility of each individual flow based on the
rate allocation returned by CNN (line 2). Then it searches
recursively for a flow to decrease (lines 3—12). At each step,
Algorithm 1 selects the link with the highest total time (line 4)
and reduces the rate of the flow traversing the link with
minimum possible utility loss (lines 5-10). Then the total
link time and the flow utilities are updated (line 11). The
process (lines 4—11) is repeated until the time for all links
comply with the time constraints. Next, we increase iteratively
a flow that yields the maximum potential utility gain, while
ensuring that all constraints are satisfied (lines 13—19). This
is done by tentatively increasing each flow, with a step-length
that complies with the demand constraint (line 14), computing
the corresponding utility increment (line 15), then finding the
flow with maximum possible utility increase (line 16), and
confirming the rate increment for that flow (line 17). Before
the next round of increasing the rates, Algorithm 1 recomputes
the total time on all links to verify that further rate increases
are possible, and updates the utility of each flow (line 18).

V. PERFORMANCE EVALUATION

We evaluate the proposed DELMU solution, which encom-
passes the CNN structure and the post processing algorithm,
on different backhaul topologies under a range of conditions.
Specifically, we use four different topologies as illustrated in
Fig. 4, where the number of BSs varies from 4 to 10, and link
rates range from 693 Mbps to 6.8 Gbps. Each path carries up
to four types of flows, i.e. with individual sigmoid, linear,
polynomial, and logarithmic utilities. For each topology, we
generate randomly 10,000 combinations of flow demands in
the range [0 — 750] Mbps in increments of 50 Mbps. The
corresponding minimum service rates are generated uniformly
at random in the range [0 — 100] Mbps as integer values, and
are capped by the maximum flow demand. The parameters
shown in Table I are used to model utility.

To train and subsequently test the neural network, we run
a global search (GS) algorithm, the optimality of which is
proven in [10], on each of the 10,000 network settings de-
scribed above. We use 80% of the results obtained to construct



Utility Type [ Linear | Sigmoid [ Polynomial | Logarithmic
a; 0.00133 | 0.08000 0.03651 0.00229
Bi 0 350 0.5 1

TABLE I: «; and B; parameters for the utility functions used in the
evaluation.

a synthetic dataset that we use in the training process, which
effectively seeks to minimise the mean square error expression
defined in (17), by means of SGD. We use the remaining
20% of cases for as ground truth for testing the accuracy
of the optimal rate allocation inferences that DELMU makes.
More precisely, we compare the performance of DELMU in
terms of total network utility and computational time, against
the solutions obtained with GS and those computed with a
baseline greedy approach that we devise. We discuss both
benchmarks in more detail in the following subsection.

To compute solutions with the GS and greedy algorithms,
and make inferences with the proposed CNN, we use a
workstation with an Intel Xeon E3-1271 CPU @ 3.60GHz and
16GB of RAM. The CNN is trained on a NVIDIA TITAN X
GPU using the open-source Python libraries TensorFlow [21]
and TensorLayer [22]. We implement the greedy solution in
Python and employ the GS solver of MATLAB®.

A. Benchmarks

The GS method works by starting from multiple points
within the feasible space and searching for local optima
in their vicinity, then concluding on the global optimum
from the set of local optima obtained [10]. With default
settings, which we employ in our evaluation, the GS generates
1,000 starting points using the scatter search algorithm [23],
then eliminates those starting points that are not promising
(judging by the corresponding value of the objective function
and constraints). It then repeatedly executes a constrained
nonlinear optimisation solver, i.e. fmincon, to search for
local maxima around the remaining start points. Eventually the
largest of all local maxima is taken as the global maximum,
if one exists. We let the local optimisation routine work with
the default Interior Point algorithm, which satisfies bounds at
all iterations and can recover from non-numeric results. We
note that simpler approximations such as semidefinite pro-
gramming are constrained to convex optimisation problems,
thus inappropriate for our task.

We also engineer a baseline greedy algorithm for the pur-
pose of evaluation, with the goal of finding reasonably good
solutions fast. The greedy approach starts by setting all flow
rates to the minimum demand and then recursively chooses a
flow to increase its rate, with the aim of achieving maximum
utility gain at the current step, as long as the constraints (14)—
(15) are respected. A solution is found when there are no
remaining flows whose rates can be further increased. For
fair comparison, the greedy approach takes exactly the same
flow demands and the corresponding minimum service rates as
used by GS and DELMU. A step size of 1 Mbps is employed.

s Topology 1 s Topology 2
6 % 6
2 2
s = =
5 = 35 =
2 2
0 0
Greedy Delmu GS Greedy Delmu GS
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=D % Sa %
] =)
. = . =
0 0
Greedy Delmu GS Greedy Delmu GS

Fig. 5: Distribution of the total utility attained by the proposed
DELMU, and the benchmark GS and greedy algorithms, for the four
topologies shown in Fig. 4. Numerical results.

B. Total Utility

We first examine the overall utility performance of the
proposed DELMU, in comparison with that of the greedy and
the GS solutions. Fig. 5 illustrates the distributions of the
total network utility for the 12 flows traversing the network,
over the 2,000 instances tested. We observe that, among the
4 topologies used, the distribution of the total utility obtained
by DELMU is almost the same as that of the optimal solution
obtained with GS, as confirmed by the similar median values,
the distance between the first and third quartiles, as well as
the whiskers (minima and maxima). Specifically, the median
values of the total utility attained by GS in Topologies 1-4
are 5.23, 4.07, 4.66, and 4.75, while those achieved by the
proposed DELMU are 5.09, 3.88, 4.56, and 4.64. In sharp
contrast to the DELMU’s close-to-optimal performance, the
greedy solution attains the medians of 3.30, 3.32, 2.81, and
3.16 utility units in the 4 topologies considered. Among these,
for the case of Topology 3, DELMU obtains a 62% total utility
gain over the greedy approach. It is also worth remarking that,
although a greedy approach can perform within well-defined
bounds from the optimum when working on submodular
objective functions [24], this is clearly suboptimal in the case
of general utility functions as addressed herein.

C. Decomposing Performance Gains

To understand how DELMU achieves close-to-optimal util-
ity, and why the benchmark greedy solution performs more
poorly, we examine one single instance for each topology, and
dissect the utility values into the components corresponding
to each type of traffic (i.e. slice). Fig. 6 illustrates the sum
of utilities for each type of traffic, attained with the greedy,
CNN, and GS approaches. We note that the greedy solution
tends to allocate more resources to traffic with logarithmic
utility (in all topologies) and respectively polynomial utility
(in Topologies 2, 3, and 4). In contrast, the CNN allocates
higher rates to traffic subject to sigmoid utility in all the
scenarios studied, which results in higher overall utility. This
is because the greedy approach gives more resources to the
flows that yield utility gains in the first steps of the algorithm’s
execution and fails to capture the inflection point of the traffic
with sigmoid utility, which can contribute to a higher overall
utility, under limited resource constraints. Furthermore, the
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Fig. 6: An example instance of the utility corresponding to each
traffic type in each topology. Bars represents the sum utility of flows
in the same slice. Numerical results.

allocations of rates to different traffic types by DELMU show
close resemblance to the GS behaviour, which confirms the
fact that DELMU achieves overall close to optimal utility
allocations, at a lower computational cost, as we will see next.

We delve deeper into the utility attained by each flow on
each slice, along different paths, and in Fig. 7 compare the
performance of our approach and the benchmarks considered
in the case of Topology 1. Flows corresponding to slices that
have linear, sigmoid, polynomial, and respectively logarithmic
utility are indexed from 1 to 4. Again, observe that the
greedy approach assigns zero utility to traffic subject to
sigmoid utility, in stark contrast with the GS method. While
DELMU obtains the highest gains from traffic with linear and
sigmoid utility on paths 2 and 3, greedy dedicates most of the
network resources to traffic with logarithmic and exponential
utility, without obtaining significantly more utility from these
types of flows. DELMU achieves accurate inference, as the
performance is nearly the same with that of GS for all flows.

Greedy Delmu GS
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(o) () [
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Fig. 7: Utility of all data flows (on different slices and over different
paths) attained by greedy, DELMU, and GS in one demand instance in
Topology 1. In each subfigure, darker shades represent higher utility
and the actual values are labelled. Numerical results.

D. Real-time Inference

To shed light on the runtime performance of the proposed
DELMU solution, we first examine the average time required
for inferring a single solution throughout the performance
analysis presented in Section V-B. We compare these com-
putation times with those of the greedy and GS approaches
over 2,000 instances and list the obtained results in Table II.
Note that the values for DELMU include the post-processing

Topology Index | 1 [ 2 [ 3 [ 4

GS 8.4339s | 4.6075s | 3.4492s | 4.8311s
Greedy 0.1500s | 0.1590s | 0.1178s | 0.1345s
DELMU 0.0036s | 0.0035s | 0.0025s | 0.0026s

TABLE II: Average computation time required to obtain a single
solution to the NUM problem in Topologies 1-4 using GS, greedy,
and the proposed CNN mechanism.

time. Observe that GS takes seconds to find a solution,
while the greedy approach, although inferior in terms of
utility performance, has runtimes in the order of hundreds of
milliseconds for a single instance. In contrast, our CNN makes
and adjusts inferences within a few milliseconds. That is, as
compared to the greedy algorithm, CNN generally requires
two orders of magnitude smaller computation time. On the
other hand, the GS algorithm, although working optimality,
has three orders of magnitude higher runtimes as compared
to DELMU. Lastly, note that the CNN inference itself requires
~1.5ms per instance, and hence the post-processing dominates
the overall execution time in the first two topologies. We
conclude that the proposed DELMU is suitable for highly
dynamic backhauls.

We complete this analysis by investigating the ability of
the proposed DELMU solution to handle network dynamics
in sliced mm-wave backhaul settings, including changes in
traffic demand due to e.g. on/off behaviour of user applica-
tions and variations in capacity triggered e.g. by occasional
blockage on the mm-wave links. We consider Topology 3 in
Fig. 4, transporting a mix of flows with linear, polynomial,
and logarithmic utility and different lifetimes, considering a
10 Mbps minimum level of service, in all cases when a flow
is active. Precisely, in Fig. 8 we examine the time evolution
of the throughput DELMU allocates to flows on each slice,
according to a sequence of events. In particular, flows subject
to sigmoid utility start with 0 Mbps demands, whilst all flows
of the other types on all path have each an initial demand of
200 Mbps. After 100 ms, a flow with sigmoid utility on path
2 (i.e. fa,2) becomes active, adding a 400 Mbps demand to
the network. At time 200 ms, partial link blockage occurs on
the link between BS 0 and BS 1, causing the corresponding
capacity co 1 to drop from 2,772 Mbps to 693 Mbps. fo
finishes 100 ms later.

Observe in the figure that the DELMU performs a correct al-
location as soon as a change occurs and, given the millisecond
scale inference times, the transition is almost instantaneous
even at the 100 ms granularity. For instance, when fs o joins,
the allocation of network resources is immediately rearranged,
so that the request of f5 5 is mostly satisfied, whereas the rest
of flows receive reduced rates. In this case, all the flows with
linear utility are reduced to close to the minimum level of
service, i.e. each to 11 Mbps rate. The drop in ¢y ; capacity at
200 ms leads to a significant degradation of the rates assigned
to flows with polynomial and logarithmic utility, while the
linear and sigmoid flows remain unaffected. Eventually, at
300 ms, when flow f5 o finishes, the rate of the flows with
polynomial and logarithmic utility are increased, yet remain
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Fig. 8: Rate allocations performed by DELMU for flows of different
slices and paths over time in Topology 3 (see Fig. 4), as a sequence
of demand and capacity changes occur as labeled at the top of the
figure. Numerical results.

below the values assigned initially, due to the inferior cg ;
capacity. Hence, the proposed DELMU is suitable for highly
dynamic backhaul environments, as it makes close to optimal
inferences fast and is able to adapt to sudden changes.

VI. RELATED WORK

In this section, we review previous work most closely
related to our contribution, which touches upon network
slicing, mm-wave backhauling, utility optimisation, and deep
learning in networking.

Network slicing. Major 5G standardisation efforts put
emphasis on the evolution towards sliced network architec-
tures [3], [25], and recent research highlights the benefits of
sharing mobile infrastructure among virtual operators [11],
[26], [27]. In [11], a slice broker concept that enables MIPs
to manage dynamically the shared network resources is pro-
posed. Based on this concept, a machine learning approach
that addresses admission control in sliced networks is given
in [26]. An online slice brokering solution is studied in [27]
with the goal of maximising the multiplexing gain in shared
infrastructure. However, existing efforts do not address the
diverse service requirements of different application scenarios.

Mm-wave backhauling. Mm-wave technology is recog-
nised as a key enabler of multi-Gbps connectivity. Dehos et
al. study the feasibility of employing mm-wave bands in
access and backhaul networks, and highlight the significant
throughput gain achievable at mm-wave frequencies as com-
pared with microwave bands [4]. Hur et al. propose a beam
alignment scheme specifically targeting mm-wave backhaul-
ing scenarios and study the wind effect on the performance

of backhaul links [5]. Sim ef al. propose a decentralised
learning based medium access protocol for multi-hop mm-
wave networks [28]. In [29], the authors advocate a max-min
fair flow rate and airtime allocation scheme for mm-wave
backhaul networks. These efforts however do not consider
network utility and disregard sliced multi-service settings.

Network utility maximisation (NUM). With growing pop-
ularity of inelastic traffic, optimising a mix of both concave
and non-concave utilities has been studied [8], [30], [31].
Fazel et al. propose a sum-of-square method to solve non-
concave NUM problems that tackle primarily polynomial
utility [8]. Hande et al. study the sufficient conditions for
the standard price-based (sub-gradient based dual) approach
to converge to global optima with zero duality gap, which
relies on capacity provisioning [30]. Chen ef al. consider
NUM with mixed elastics and inelastic traffic, and develop
a heuristic method to approximate the optimal [31]. Recent
work investigates convex relaxation of polynomial NUM
and employs distributed heuristics to approximate the global
optimal [9], and Udell and Boyd define a general class of non-
convex problems as sigmoidal programming and propose an
approximation algorithm [15]. The limitation of these heuris-
tics lies within their convergence times that is in the order of
seconds, which can hardly meet the latency requirements of
5G networks. In contrast, our deep learning approach infers
close to optimal rate allocations within milliseconds.

Deep learning in networking. With the increase in com-
putational power and data sets availability, a range of deep
learning applications in the computer and communications
networking domain are emerging [32]. A fully-connected
neural network is used in [33] to find optimal routes in
wired/wireless heterogeneous networks. Zhang et al. em-
ploy a dedicated CNNs to infer fine-grained mobile traffic
consumption from coarse traffic aggregates [34], improving
measurement resolution by up to 100x while maintaining
hight accuracy. CNNs have also employed been in [35], where
the authors incorporate a 3D-CNN structure into a spatio-
temporal neural network, to perform long-term mobile traffic
forecasting. To the best of our knowledge, our work is the first
that uses deep learning to solve utility optimisation problems
in sliced backhauls.

VII. CONCLUSIONS

In this paper we tackled utility optimisation in sliced
mm-wave networks by proposing DELMU, a deep learning
approach that learns correlations between traffic demands and
optimal rate allocations. We specifically deal with scenarios
where traffic is subject to conflicting requirements and max-
imise non-concave utility functions that reconcile all services,
while overcoming the inherent complexity of the problems
posed. We demonstrated that the proposed convolutional neu-
ral network attains up to 62% utility gains over a greedy
approach, infers close to optimal allocation solutions within
orders of magnitude shorter runtimes as compared to global
search, and responds quickly to network dynamics.
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