

HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models

Young D. Kwon*, Rui Li*, Sijia Li, Da Li, Sourav Bhattacharya, and Stylianos I. Venieris
Samsung AI Center - Cambridge, UK

Samsung Research
AI Center-Cambridge

*Joint First Authors [✉ {yd.kwon, rui.li}@samsung.com](mailto:{yd.kwon, rui.li}@samsung.com)

TL;DR: We identify dual hierarchy of SOTA large-scale diffusion models at inter-block and intra-block levels, and design an effective compression framework that significantly reduces resource demands while preserving image generation quality.

Introduction

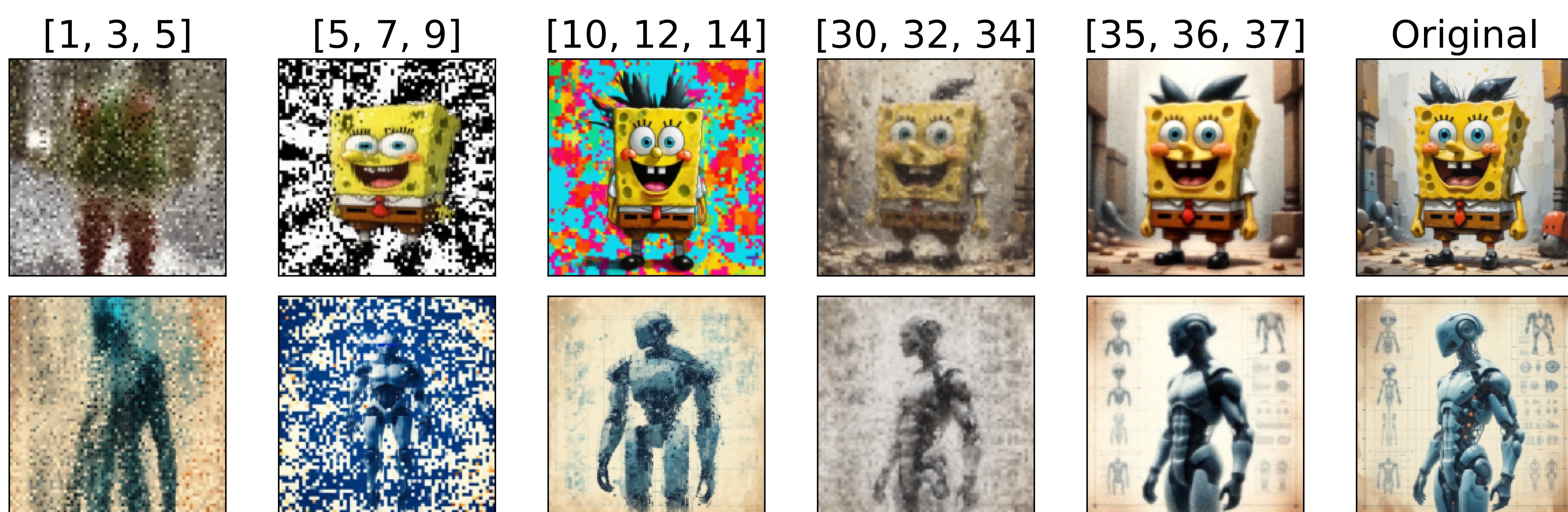
💡 SOTA diffusion models (DMs), e.g. Stable Diffusion 3.5 [1], FLUX.1 [2], employ multi-modal diffusion Transformer (MMDiT) backbone, with large parameter scale (8-11B), leading to high latency and memory requirements.

✂️ Existing block pruning methods such as BK-SDM [3] and KOALA [4] focus on UNet-based backbones, which do not preserve image quality well when applied to MMDiT-based DMs.

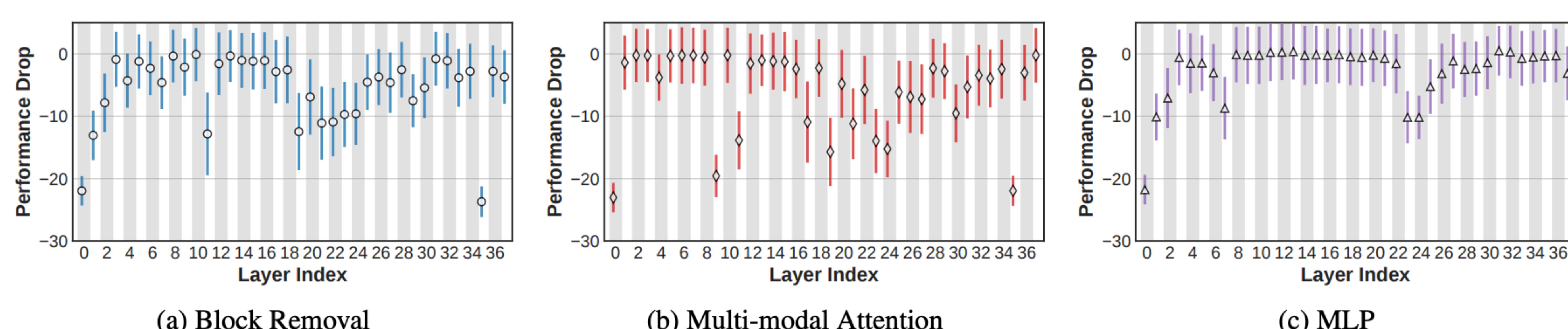
🚀 Based on key observations of the hierarchical nature of MMDiT, we propose a compression method for SOTA DMs that significantly reduces memory footprint and inference latency.

The Two-fold Hierarchy

💡 Inter-block Hierarchy: Early blocks establish semantic structure. Later blocks handle detailed refinements.



💡 Intra-block Hierarchy: Not all subcomponents (Attention, MLP) are equal. Their importance varies by position.



HierarchicalPrune

- I. Hierarchical Position Pruning (HPP), which identifies and removes less essential later blocks based on position hierarchy.
- II. Positional Weight Preservation (PWP), which systematically protects early model portions that are essential for semantic structural integrity.
- III. Sensitivity-Guided Distillation (SGDistill), which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations.

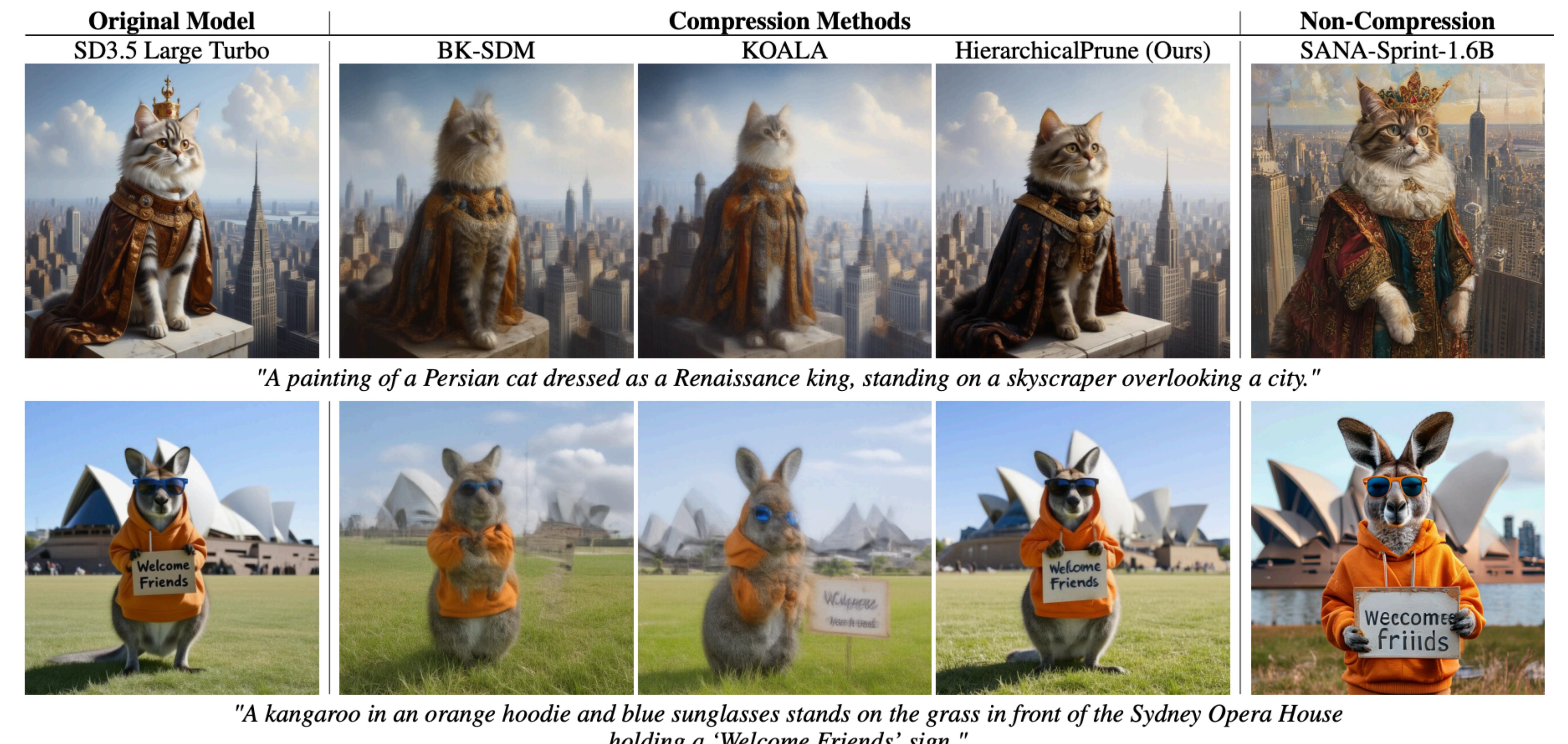
Evaluation

- Baselines: KOALA [3] employs input-output cosine similarity, and BK-SDM [4] uses impact on CLIP Score during block removal as importance scores. Both works target UNet architecture.
- Platforms used for latency & memory measurement: NVIDIA A100 (80GB), A6000 (48GB), and GTX 3090 24GB.

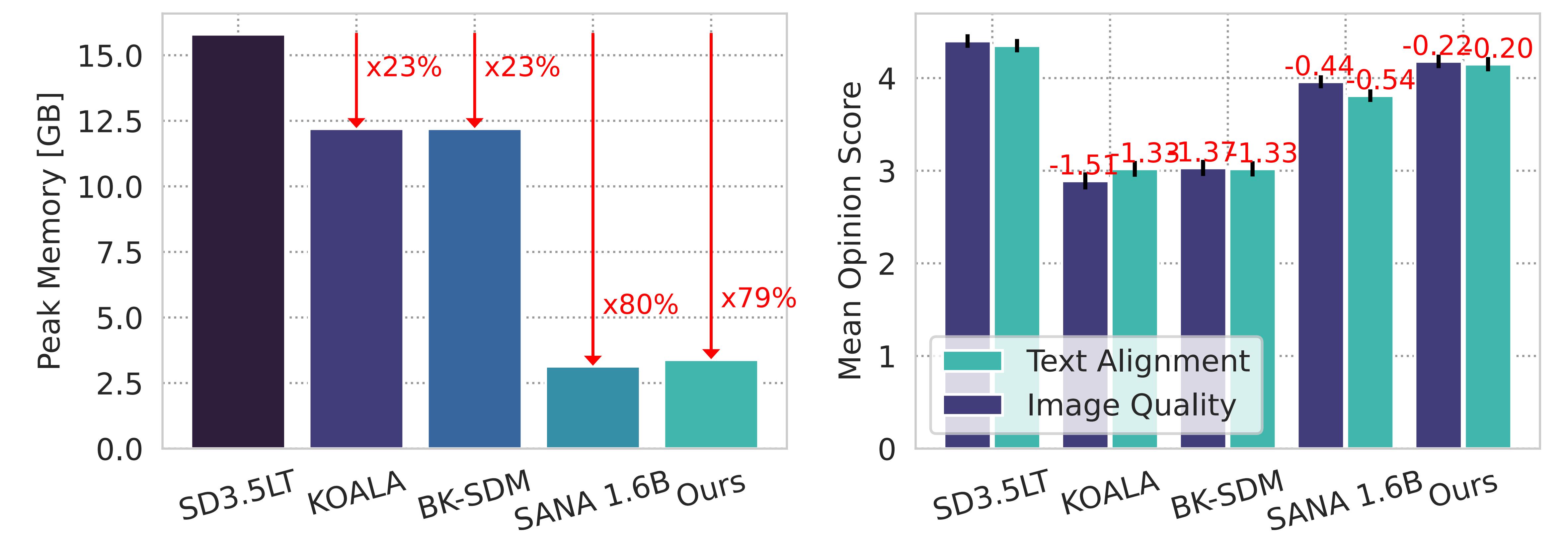
References

- [1] Esser, P. et al. Scaling Rectified Flow Transformers for HighResolution Image Synthesis. In International Conference on Machine Learning (ICML'24).
- [2] Black Forest Labs. Flux.1 Model Family. <https://blackforestlabs.ai/announcing-black-forest-labs/>
- [3] Kim, et al., BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion. In European Conference on Computer Vision (ECCV'24).
- [4] Lee, Y. et al., KOALA: Empirical Lessons toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis. Advances in Neural Information Processing Systems (NeurIPS'24).

> "A picture is worth a thousand words."



> Peak memory reduction (Left) and Mean Opinion Score (Right)



> Image quality scores and the corresponding peak memory measurements in GB and remaining ratios (%) after compression.

Model	Method	Memory (%)	GenEval ↑	HPSv2 ↑	Reduction ↓
Linear DiT	SANA-Sprint	3.14 GB (100%)	0.77	29.61	-
	Original	15.8 GB (100%)	0.71	30.29	-
SD3.5	KOALA	12.6 GB (79.4%)	0.37	19.99	41.2%
Large Turbo	KOALA (+Quant)	3.56 GB (22.5%)	0.33	18.44	46.4%
	BK-SDM	12.6 GB (79.4%)	0.38	21.21	38.2%
	BK-SDM (+Quant)	3.56 GB (22.5%)	0.34	19.83	43.3%
	Ours (HPP+PWP+Q)	3.56 GB (22.5%)	0.69	28.15	4.8%
	Ours (All)	3.24 GB (20.5%)	0.62	26.29	13.3%
FLUX.1	Original	22.6 GB (100%)	0.66	29.71	-
Schnell	KOALA	15.9 GB (70.5%)	0.38	25.24	28.7%
	BK-SDM	15.9 GB (70.5%)	0.45	27.38	19.8%
	Ours (All)	4.44 GB (19.6%)	0.64	28.69	3.2%

> Ablation study of each component and quantisation.

Pruning Ratio	Method	Remaining Memory (%)	GenEval ↑	HPSv2 ↑	Reduction ↓
None (0%)	Original	100%	0.71	30.29	-
Moderate Pruning (20%)	Ours (HPP)	79.4%	0.03	11.08	79.4%
	Ours (+PWP)	79.4%	0.71	28.97	2.5%
	Ours (+Quant)	22.5%	0.69	28.15	4.8%
Aggressive Pruning (30%)	Ours (HPP)	71.5%	0.0	7.00	88.4%
	Ours (+PWP)	71.5%	0.46	21.74	31.9%
	Ours (+SGDistill)	71.5%	0.64	27.29	10.1%
	Ours (+Quant)	20.5%	0.62	26.29	13.3%

✓ HierarchicalPrune achieves reduction rates of **79.5-80.4%** in memory & **27.9-38.0%** in latency (see paper) compared to original models.

✓ Only experiences minimum drop of image quality (4.8-5.3%) according to user study and General and HPSv2 benchmarking.

Conclusions

- We introduced HierarchicalPrune, a position-aware and fine-grained compression method for billion-parameter scale DMs to friendly to consumer-grade-GPU inferences.
- HierarchicalPrune delivers significant memory & latency reduction, with minimum drop of image quality.